342
J. Ramírez-Fernández et al.
LETTER
Table 2 RCM of Polyfunctionalized Nonanolactonesa
O
R1
R2
O
R4
R6
O
R4
O
R1
R2
R2
R3
R4
R5
O
O
R5
R3
R1
R5
R6
R6
R3
Ester
6
Yield (%)
62
Product
(E)-19a: R1 = R3 = Me; R2 = R4 = R5 = R6 = H
10a
10b
10c
14a
14b
58
(Z)-19b: R1 = R3 = Me; R2 = OAc; R4 = R5 = R6 = H
(Z)-19c: R1 = R3 = Me; R2 = OBn; R4 = R5 = R6 = H
19d: R1 = R3 = Me; R2 = OTBDMS; R4 = R5 = R6 = H
19e: R1 = R2 = R3 = H; R4 = R6 = Me; R5 = OTBDMS
(E)-19f: R1 = R2 = R3 = H; R4 = R6 = Me; R5 = OH
46
n.r.b
n.r.b
71
a Reaction conditions: 2, CH2Cl2, 50 °C, 12 h.
b No reaction.
(6) Shiina, I.; Takasuna, Y.; Suzuki, R.; Oshiumi, H.;
Komiyama, Y.; Hitomi, S.; Fukui, H. Org. Lett. 2006, 8,
5279.
(7) Parenty, A.; Moreau, X.; Campagne, J. M. Chem. Rev. 2006,
106, 911.
(8) Hundsdiecker, H.; Erlbach, H. Chem. Ber. 1947, 80, 129.
(9) (a) Galli, C.; Illuminati, G.; Mandolini, L. J. Am. Chem. Soc.
1973, 95, 8374. (b) Galli, C.; Illuminati, G.; Mandolini, L.;
Tamborra, P. J. Am. Chem. Soc. 1977, 99, 2591. (c) For a
review, see: Illuminati, G.; Mandolini, L. Acc. Chem. Res.
1981, 14, 95.
(10) For RCM approaches to the synthesis of nine-membered-
ring lactones, see: (a) Takahashi, T.; Wataqnabe, H.;
Kitahara, T. Heterocycles 2002, 58, 99. (b) Baba, Y.; Saha,
G.; Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.;
Takemoto, Y. J. Org. Chem. 2001, 66, 81.
(11) (a) Sheddan, N. A.; Airon, V. B.; Mulzer, J. Tetrahedron
Lett. 2006, 47, 6689. (b) Castoldi, D.; Caggiano, L.; Bayón,
P.; Costa, A. M.; Cappella, P.; Sharonm, O.; Gennari, C.
Tetrahedron 2005, 61, 2123. (c) Caggiano, L.; Castoldi, D.;
Beumer, R.; Bayón, P.; Telser, J.; Gennari, C. Tetrahedron
Lett. 2002, 44, 7913.
(12) (a) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 77.
(b) Días, L. C.; Bau, R. Z.; De Sousa, M. A.; Zukerman-
Schpector, J. Org. Lett. 2002, 4, 4325.
lectivity is believed to be due to the functionality around
the ruthenacyclobutane intermediate that favors the trans-
ruthenacycle leading to the less stable E-isomer. Hence,
the E-olefin selectivity obtained for ester 14b could be ra-
tionalized by coordination of the homoallylic alcohol with
the ruthenium metal center in the ruthenacyclobutane in-
termediate. The resulting arranged intermediate imposes
added steric/electronic restrictions leading to higher se-
lectivities for the E-olefin RCM product via a kinetic pro-
cess.18 On the other hand, the Z-stereoisomers obtained
from compounds 10a and 10b could be explained by in-
teraction/coordination of the protected allylic alcohols
with the ruthenium which favors the cis-ruthenacycle
leading to the corresponding Z-isomers. Computational
studies of this unusual cyclization stereochemistry are un-
derway to provide a satisfactory explanation of these re-
sults.
Acknowledgment
This work was supported by the Spanish Science and Technology
Ministry through project AGL2006-13401-C02-01.
(13) The geometry of double bond for lactones 19a–c was
determined on the basis of NOE experiments. In addition the
E-geometry of 19f was assigned by coupling constant
between olefinic protons.
(14) (a) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res.
1995, 28, 446. (b) Baylon, C.; Heck, M. P. J. Org. Chem.
1999, 64, 3354.
(15) Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310.
(16) Handbook of Metathesis, Vol. 1–3; Grubbs, R. H., Ed.;
Wiley-VCH: Weinheim, 2003.
(17) Castoldi, D.; Caggiano, L.; Panigada, L.; Sharon, O.; Costa,
A. M.; Gennari, C. Chem. Eur. J. 2006, 12, 51.
(18) Engelhardt, F. C.; Schmitt, M. J.; Taylor, R. E. Org. Lett.
2001, 3, 2209.
References and Notes
(1) Rousseau, G. Tetrahedron 1995, 51, 2777.
(2) Cutler, H. G.; Jacyno, J. M.; Harwood, J. S.; Dulik, D.;
Goodrich, P. D.; Roberts, R. G. Biosci., Biotechnol.,
Biochem. 1993, 57, 1980.
(3) Tani, H.; Koshino, H.; Sakuno, E.; Nakajima, H. J. Nat.
Prod. 2005, 68, 1768.
(4) Tani, H.; Koshino, H.; Sakuno, E.; Cutler, H. G.; Nakajima,
H. J. Nat. Prod. 2006, 69, 722.
(5) Chakraborty, T. K.; Goswami, R. K. Tetrahedron Lett. 2006,
47, 4917.
Synlett 2008, No. 3, 339–342 © Thieme Stuttgart · New York