Journal of the American Chemical Society
Article
(2) For selected examples of C−C bond formation via decarbox-
ylative cross-coupling of nonactivated aliphatic carboxylic acids: (a) Liu,
X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.
(b) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem.
Commun. 2013, 49, 5672. (c) Wang, Y.; Zhang, L.; Yang, Y.; Zhang, P.;
Du, Z.; Wang, C. J. Am. Chem. Soc. 2013, 135, 18048. (d) Noble, A.;
McCarver, S. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 624.
(e) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.;
Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196. (f) Premi, C.; Dixit,
A.; Jain, N. Org. Lett. 2015, 17, 2598.
acids could be easily obtained from the transformation of
natural products. Therefore, this newly developed reaction
provides an efficient approach for the late-stage modification of
some core structures. Of particular note is that, in the presence
of a directing group, a copper catalyst plays an important role in
the C−N bond formation step. It is the basis of the controllable
site-selectivity of this reaction. Our work may also be
considered as a big step toward controllable radical
decarboxylative carbon−heteroatom cross-coupling.
(3) For selected examples of C−heteroatom bond formation via
decarboxylative cross-coupling of nonactivated aliphatic carboxylic
acids: (a) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem.
Soc. 2012, 134, 4258. (b) Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem.
Soc. 2012, 134, 10401. (c) Hu, F.; Shao, X.; Zhu, D.; Lu, L.; Shen, Q.
Angew. Chem., Int. Ed. 2014, 53, 6105. (d) Wang, P.-F.; Wang, X.-Q.;
Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Org. Lett. 2014, 16, 4586. (e) Ventre, S.;
Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137,
5654. (f) Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. J. Am. Chem. Soc.
2015, 137, 9820. (g) Zhu, Y.; Li, X.; Wang, X.; Huang, X.; Shen, T.;
Zhang, Y.; Sun, X.; Zou, M.; Song, S.; Jiao, N. Org. Lett. 2015, 17,
4702. For selected examples of C−N bond formation via
decarboxylative cross-coupling of activated carboxylic acids:
(h) Zhang, Y.; Patel, S.; Mainolfi, N. Chem. Sci. 2012, 3, 3196.
(i) Kiyokawa, K.; Yahata, S.; Kojima, T.; Minakata, S. Org. Lett. 2014,
16, 4646. (j) Sheng, W.-J.; Ye, Q.; Yu, W.-B.; Liu, R.-R.; Xu, M.; Gao,
J.-R.; Jia, Y.-X. Tetrahedron Lett. 2015, 56, 599.
4. EXPERIMENTAL SECTION
General Procedure for Copper-Catalyzed Intramolec-
ular Decarboxylative C−N Coupling of Aliphatic
Carboxylic Acids. To a 10 mL thick-walled pressure tube
was sequentially added Cu(OTf)2 (7.2 mg, 0.02 mmol), DMAP
(7.3 mg, 0.06 mmol), 1 (0.2 mmol), PhIO (44 mg, 0.2 mmol),
and 0.5 mL of CH2Cl2. The tube was sealed with a Teflon lined
cap and the reaction mixture was stirred at 100 °C for 1 h. After
cooling to room temperature, another portion of PhIO (44 mg,
0.2 mmol) was added and the reaction mixture was stirred at
100 °C for another 3 h. After complete consumption of 1 (the
reaction progress was monitored by TLC; for some substrates
with slower reaction rate, it is necessary to prolong the reaction
time), the product 2 could be obtained by silica gel column
chromatography.
(4) For a selected review of aliphatic acids: Harwood, H. J. Chem.
Rev. 1962, 62, 99.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
(5) (a) Hartmann, R. W.; Hector, M.; Wachall, B. G.; Palusczak, A.;
Palzer, M.; Huch, V.; Veith, M. J. Med. Chem. 2000, 43, 4437.
(b) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014,
57, 5845.
(6) (a) Hunsdiecker, H.; Hunsdiecker, C. Ber. Dtsch. Chem. Ges. B
1942, 75B, 291;(b) Hunsdiecker, H.; Hunsdiecker, C.; Vogt, E. U.S.
Patent 2,176,181, 1939; Chem. Abstr. 1940, 34, 1685. (c) Cristol, S. J.;
Firth, W. C., Jr. J. Org. Chem. 1961, 26, 280. (d) Kochi, J. K. J. Am.
Chem. Soc. 1965, 87, 2500. (e) Kochi, J. K. J. Org. Chem. 1965, 30,
3265. (f) Kochi, J. K. Science 1967, 155, 415. (g) McKillop, A.;
Bromley, D.; Taylor, E. C. J. Org. Chem. 1969, 34, 1172.
■
S
Experimental details and compound characterizations
Crystallographic data (CIF)
Crystallographic data (CIF)
Crystallographic data (CIF)
(7) For selected reviews of directed C−H functionalization:
(a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed.
2009, 48, 9792. (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2009, 48, 5094. (c) Daugulis, O.; Do, H.-Q.;
Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (d) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (e) Lyons, T.
W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Wencel-Delord, J.;
AUTHOR INFORMATION
■
Corresponding Authors
Notes
Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
̈
The authors declare no competing financial interest.
(g) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012,
45, 788. (h) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015,
48, 1053.
ACKNOWLEDGMENTS
■
(8) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7.
(9) He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc.
2012, 134, 3.
(10) For selected examples of saturated N-heterocycles synthesis via
transition metal catalyzed C−N bond formation reaction: (a) Fix, S.
R.; Brice, J. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2002, 41, 164.
This work was supported by the 973 Program
(2012CB215306), NSFC (21325208, 21361140372,
21572212, 21302178, 21472181), CAS (YZ201563),
IPDFHCPST (2014FXCX006), FRFCU, PCSIRT and Youth
Innovation Promotion Association of the Chinese Academy of
Sciences (2015371).
(b) Streuff, J.; Hovelmann, C. H.; Nieger, M.; Muniz, K. J. Am. Chem.
̈
̃
Soc. 2005, 127, 14586. (c) Muniz, K.; Hovelmann, C. H.; Streuff, J. J.
̃
̈
REFERENCES
Am. Chem. Soc. 2008, 130, 763. (d) Wu, T.; Yin, G.; Liu, G. J. Am.
Chem. Soc. 2009, 131, 16354. (e) Zhao, B.; Du, H.; Cui, S.; Shi, Y. J.
Am. Chem. Soc. 2010, 132, 3523. (f) Sequeira, F. C.; Turnpenny, B.
W.; Chemler, S. R. Angew. Chem., Int. Ed. 2010, 49, 6365. (g) Bovino,
M. T.; Chemler, S. R. Angew. Chem., Int. Ed. 2012, 51, 3923.
(h) Ingalls, E. L.; Sibbald, P. A.; Kaminsky, W.; Michael, F. E. J. Am.
Chem. Soc. 2013, 135, 8854. (i) Egami, H.; Kawamura, S.; Miyazaki, A.;
Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841. (j) Vo, C.-V. T.;
Bode, J. W. J. Org. Chem. 2014, 79, 2809. (k) Siau, W.-Y.; Bode, J. W. J.
Am. Chem. Soc. 2014, 136, 17726. (l) Lindsay, V. N. G.; Viart, H. M.-
■
(1) For selected reviews of decarboxylative cross-coupling reactions:
(a) Gooßen, L. J.; Rodríguez, N.; Gooßen, K. Angew. Chem., Int. Ed.
2008, 47, 3100. (b) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J.
A. Chem. Rev. 2011, 111, 1846. (c) Rodríguez, N.; Goossen, L. J.
Chem. Soc. Rev. 2011, 40, 5030. (d) Shang, R.; Liu, L. Sci. China: Chem.
2011, 54, 1670. (e) Cornella, J.; Larrosa, I. Synthesis 2012, 44, 653.
(f) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3, 2671.
(g) Park, K.; Lee, S. RSC Adv. 2013, 3, 14165. (h) Shen, C.; Zhang, P.;
Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX