6258
M. Durandetti, J. Pe´richon / Tetrahedron Letters 47 (2006) 6255–6258
12. (a) Arnauld, T.; Barrett, A. G. M.; Seifried, R. Tetra-
hedron Lett. 2001, 42, 7899–7901; (b) Felpin, F.-X.;
Bertrand, M.-J.; Lebreton, J. Tetrahedron 2002, 58,
7381–7389.
13. (a) Kamble, R. M.; Singh, V. K. Tetrahedron Lett. 2001,
42, 7525–7526; (b) Nokami, J.; Otera, J.; Sudo, T.;
Okawara, R. Organometallics 1983, 2, 191–193.
14. (a) Masuyama, Y.; Kinugawa, N.; Kurusu, Y. J. Org.
Chem. 1987, 52, 3704–3706; (b) Araki, S.; Kamei, T.;
Hirashita, T.; Yamamura, H.; Kawai, M. Org. Lett. 2000,
2, 847–849.
95/5 even after 12 h. The reversibility of allylation using
allylic organozinc reagent has already been reported by
Miginiac et al.,6a,b who mentioned that homoallylic
alcohol are obtained initially with a ratio B/L of
50/50, and of 0/100 after 12 h.
In conclusion, we have reported in this paper an original
method of efficient addition of allylic acetates to
ketones, enabling the preparation of valuable target
molecules: homoallylic alcohols. The method is also very
easy, cheap, and low toxic, compared to the other meth-
ods described in the literature, where palladium com-
plexes, in the presence of another reducing salt, must
be used to activate allyl acetate. The reduction of FeII
by manganese metal probably leads to Fe0, which is sta-
bilized by 2,20-bipyridine. Reactions are regioselective:
the branched product B is the major product, but the
process permits the obtention of the linear isomer.
15. Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron
Lett. 1986, 27, 1195.
16. (a) Casolari, S.; D’Addario, D.; Tagliavini, E. Org. Lett.
1999, 1, 1061; (b) Tietze, L. F.; Volkel, L.; Wulff, C.;
Weigand, B.; Bittner, C.; McGrath, P.; Johnson, K.;
Schafer, M. Chem. Eur. J. 2001, 7, 1304–1308; (c)
Pignataro, L.; Benaglia, M.; Annunziata, R.; Cinquiti,
M.; Cozzi, F. J. Org. Chem. 2006, 71, 1458; (d) Denmark,
S. E.; Fu, J.; Coe, D. M.; Su, X.; Pratt, N. E.; Griegel, B.
D. J. Org. Chem. 2006, 71, 1513; (e) Denmark, S. E.; Fu,
J.; Lawler, M. J. J. Org. Chem. 2006, 71, 1523.
´
17. Gomes, P.; Gosmini, C.; Perichon, J. Synthesis 2003,
References and notes
1909–1915.
18. Torii, S.; Uneyama, K.; Matsuda, H. Tetrahedron Lett.
1984, 25, 6017–6020.
1. Reviews: (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993,
93, 2207–2293; (b) Denmark, S. E.; Fu, J. Chem. Rev.
2003, 103, 2763–2793.
2. (a) Ramachandran, P. V.; Reddy, M. V. R.; Brown, H. B.
Tetrahedron Lett. 2000, 41, 583–586; (b) Reddy, M. V. R.;
Rearick, J. P.; Hoch, N.; Ramachandran, P. V. Org. Lett.
2001, 3, 19–20.
´
19. (a) Durandetti, S.; Sibille, S.; Perichon, J. J. Org. Chem.
`
1989, 54, 2198–2204; (b) Rollin, Y.; Derien, S.; Dunach,
´
E.; Gebehenne, C.; Perichon, J. Tetrahedron 1993, 49,
´
´
7723–7732; (c) Durandetti, M.; Nedelec, J.-Y.; Perichon, J.
Org. Lett. 2001, 3, 2073–2076.
20. (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev.
2004, 104, 6217; (b) Watahiki, T.; Oriyama, T. Tetra-
hedron Lett. 2002, 43, 8959–8962.
3. Alonso, E.; Guijarro, D.; Ramon, D. J.; Yus, M.
Tetrahedron 1999, 55, 11027–11038.
4. (a) Blomberg, C.; Hartog, F. A. Synthesis 1977, 18; (b)
Yamamoto, Y.; Maruyama, K. J. Org. Chem. 1983, 48,
1564–1565.
´
21. Durandetti, M.; Meignein, C.; Perichon, J. Org. Lett.
2003, 5, 317–320.
´
22. Durandetti, M.; Meignein, C.; Perichon, J. J. Org. Chem.
5. Courtois, G.; Miginiac, L. J. Organomet. Chem. 1974, 69,
1–44.
2003, 68, 3121–3124.
´
23. (a) Durandetti, M.; Perichon, J. Patent application, FR
6. (a) Miginiac, P.; Bouchoule, C. Bull. Chim. Soc. Fr. 1968,
4675–4676; (b) Barbot, F.; Miginiac, P. J. Organomet.
Chem. 1977, 132, 445–454; (c) Ranu, B. C.; Majee, A.;
Das, A. R. Tetrahedron Lett. 1995, 36, 4885–4888; (d)
Sklute, G.; Marek, I. J. Am. Chem. Soc. 2006, 128, 4642–
4649.
7. Hegedus, L. S.; Wagner, S. D.; Waterman, E. L.; Siirala-
Hansen, K. J. Org. Chem. 1975, 40, 593–598.
8. (a) Nowotny, S.; Tucker, C. E.; Jubert, C.; Knochel, P.
J. Org. Chem. 1995, 60, 2762–2772; (b) Baati, R.;
Gouverneur, V.; Mioskowski, C. J. Org. Chem. 2000, 65,
1235–1238.
9. (a) Khan, F. A.; Prabhudas, B. Tetrahedron 2000, 56,
7595–7599; (b) Lombardo, M.; Girotti, R.; Morganti, S.;
Trombini, C. Org. Lett. 2001, 3, 2981–2983; (c) Hirashita,
T.; Kambe, S.; Tsuji, H.; Omori, H.; Araki, S. J. Org.
Chem. 2004, 69, 5054–5059.
´
2004–7230; (b) Durandetti, M.; Perichon, J. Synthesis
2006, 1542–1548.
24. Ito, A.; Kishida, M.; Kurusu, Y.; Masuyama, Y. J. Org.
Chem. 2000, 65, 494–498.
25. General procedure for the cross-coupling of allylic
acetates with carbonyl compounds: 10 mmol of carbonyl
compounds and 13 mmol of allylic acetates were added
in a stirred flask under argon at 80 °C with 30 mL of
DMF. Then 1.35 g of Mn (25 mmol) is introduced,
followed by 1.1 g of ZnBr2 (5 mmol), 0.39 g of 2,20-
bipyridine (2.5 mmol), and 0.54 g of FeBr2 (2.5 mmol)
and finally 20 lL of CF3CO2H to activate manganese
metal. The reaction is conducted at 80 °C and was
monitored by GC-analysis and quenched after the
carbonyl compounds were consumed (ca. 5 h for the
branched product or 24 h for the linear product). The
mixture was then hydrolyzed with 1 N HCl and diluted
with diethyl ether. The aqueous layer was extracted with
diethyl ether, the combined organic layers were washed
with water and saturated NaCl solution, dried over
MgSO4, and the solvent was evaporated. The oil thus
obtained was purified by column chromatography to give
the desired compounds.
10. (a) Cahiez, G.; Chavant, P.-Y. Tetrahedron Lett. 1989, 30,
7373; (b) Furstner, A.; Brunner, H. Tetrahedron Lett.
¨
1996, 37, 7009–7012; (c) Kakiya, H.; Nishimae, S.;
Shinokubo, H.; Oshima, K. Tetrahedron 2001, 57, 8807.
11. (a) Davis, A. P.; Jaspars, M. J. Chem. Soc. Perkin Trans.
1992, 2111–2118; (b) Yadav, J. S.; Chand, P. K.; Anja-
neyulu, S. Tetrahedron Lett. 2002, 43, 3783–3784.