1342 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 5
Fattorusso et al.
(12) Ginsburg, H.; Ward, S. A.; Bray, P. G. An integrated model of
chloroquine action. Parasitol. Today 1999, 15, 357–360.
(13) (a) Payne, D. Did medicated salt hasten the spread of chloroquine
resistance in Plasmodium falciparum. Parasitol. Today 1988, 4, 112–
115. (b) Ursos, L. M. B.; Roepe, P. D. Chloroquine resistance in the
malarial parasite, Plasmodium falciparum. Med. Res. ReV. 2002, 22,
465–491.
(14) Sidhu, A. B.; Verdier-Pinard, D.; Fidock, D. A. Chloroquine resistance
in Plasmodium falciparum malaria parasites conferred by pfcrt
mutations. Science 2002, 298, 210–213.
(15) (a) Wilson, C. M.; Serrano, A. E.; Wasley, A.; Bogenschutz, M. P.;
Shankar, A. H.; Wirth, D. F. Amplification of a gene related to
mammalian mdr genes in drug resistant Plasmodium falciparum.
Science 1989, 244, 1184–1186. (b) Foote, S. J.; Thompson, J. K.;
Cowman, A. F.; Kemp, D. J. Amplification of the multidrug resistance
gene in some chloroquine-resistant isolates of P. falciparum. Cell 1989,
57, 921–930.
(16) (a) Fidock, D. A.; Nomura, T.; Talley, A. K.; Cooper, R. A.; Dzekunov,
S. M.; Ferdig, M. T.; Ursos, L. M.; Sidhu, A. B.; Naude, B.; Deitsch,
K. W.; Su, X. Z.; Wootton, J. C.; Roepe, P. D.; Wellems, T. E. Mutations
in the P. falciparum digestive vacuole transmembrane protein PfCRT and
evidence for their role in chloroquine resistance. Mol. Cell 2000, 6, 861–
871. (b) Waller, K. L.; Muhle, R. A.; Ursos, L. M.; Horrocks, P.;
Verdier-Pinard, D.; Sidhu, A. B. S.; Fujioka, H.; Paul, D.; Roepe,
P. D.; Fidock, D. A. Chloroquine resistance modulatedin Vitro by
expression levels of the Plasmodium falciparum chloroquine resistance
transporter. J. Biol. Chem. 2003, 278, 33593–33601.
(17) (a) Gemma, S.; Campiani, G.; Butini, S.; Kukreja, G.; Joshi, B. P.;
Persico, M.; Catalanotti, B.; Novellino, E.; Fattorusso, E.; Nacci, V.;
Savini, L.; Taramelli, D.; Basilico, N.; Morace, G.; Yardley, V.;
Fattorusso, C. Design and synthesis of potent antimalarial agents based
on clotrimazole scaffold: Exploring an innovative pharmacophore.
J. Med. Chem. 2007, 50, 595–598. (b) Gemma, S.; Kukreja, G.;
Campiani, G.; Butini, S.; Bernetti, M.; Joshi, B. P.; Savini, L.; Basilico,
N.; Taramelli, D.; Yardley, V.; Bertamino, A.; Novellino, E.; Persico,
M.; Catalanotti, B.; Fattorusso, C. Development of piperazine-tethered
heterodimers as potent antimalarials against chloroquine-resistant P.
falciparum strains. Synthesis and molecular modelling. Bioorg. Med.
Chem. Lett. 2007, 17, 3535–3539.
(18) (a) Savini, L.; Chiasserini, L.; Gaeta, A.; Pellerano, C. Synthesis and
anti-tubercular evaluation of 4-quinolylhydrazones. Bioorg. Med.
Chem. 2002, 10, 2193–2198. (b) Savini, L.; Massarelli, P.; Chiasserini,
L.; Nencini, C.; Pellerano, C. Chelating agents as potential antitu-
morals: alpha-(N)-heterocyclic hydrazones and bis-alpha-(N)-hetero-
cyclic hydrazones. Il Farmaco 1997, 52, 609–613. (c) Savini, L.;
Massarelli, P.; Chiasserini, L.; Sega, A.; Pellerano, C.; Barzi, A.;
Nocentini, G. Chelating agents as potential antitumorals. 2-Quinolyl-
hydrazones and bis-2-quinolylhydrazones. I. Eur. J. Med. Chem. 1995,
30, 547–552. (d) Bartolucci, C.; Cellai, L.; Di Filippo, P.; Brizzi, V.;
Pellerano, C.; Savini, L.; Benedetto, A.; Elia, G. Quinolinehydrazones
as inhibitors of retroviral reverse transcriptase. Il Farmaco 1992, 47,
945–952. (e) Pellerano, C.; Savini, L.; Massarelli, P. Tridentate N-N-N
chelating systems as potential antitumor agents. Il Farmaco 1985, 40,
645–654. (f) Actor, P. P.; Pellerano, C. E. G. U.S. Patent 3,646,019,
February 29, 1972. (g) Thomas, J.; Berkoff, C. E.; Flagg, W. B.; Gallo,
J. J.; Haff, R. F.; Pinto, C. A.; Pellerano, C.; Savini, L. Antiviral
quinolinehydrazones. Modified Free-Wilson analysis. J. Med. Chem.
1975, 18, 245–250.
Supporting Information Available: Experimental section, table
of elemental analyses, and Figure 1SI. This material is available
References
(1) Hay, S. I.; Guerra, C. A.; Tatem, A. J.; Noor, A. M.; Snow, R. W.
The global distribution and population at risk of malaria: past, present,
and future. Lancet Infect. Dis. 2004, 4, 327–236.
(2) (a) Trape, J. F. The public health impact of chloroquine resistance in
Africa. Am. J. Trop. Med. Hyg. 2001, 64, 12–17. (b) May, J.; Meyer,
C. G. Chemoresistance in falciparum malaria. Trends Parasitol. 2003,
19, 432–435. (c) Maitland, K.; Makanga, M.; Williams, T. N.
Falciparum malaria: Current therapeutic challenges. Curr. Opin. Infect.
Dis. 2004, 17, 405–412.
(3) (a) Price, R. N. Artemisinin drugs: Novel antimalarial agents. Expert
Opin. InVest. Drugs 2000, 9, 1815–1827. (b) Vivas, L.; Rattrayl, L.;
Stewart, L. B.; Robinson, B. L.; Fugmann, B.; Haynes, R. K.; Peters,
W.; Croft, S. L. Antimalarial efficacy and drug interactions of the
novel semi-synthetic endoperoxide artemisone in vitro and in vivo. J.
Antimicrob. Ther. 2007, 59, 658–665. (c) Schellenberg, D.; Abdulla,
S.; Roper, C. Current issues for anti-malarial drugs to control P.
falciparum malaria. Curr. Mol. Med. 2006, 6, 253–260.
(4) Tang, Y.; Dong, Y.; Vennerstrom, J. L. Synthetic peroxides as
antimalarials. Med. Res. ReV. 2004, 24, 425–448.
(5) Mutabingwa, T. K. Artemisinin-based combination therapies (ACTs):
Best hope for malaria treatment but inaccessible to the needy. Acta
Trop. 2005, 95 (3), 305–315.
(6) (a) Denis, M. B.; Davis, T. M.; Hewitt, S.; Incardona, S.; Nimol, K.;
Fandeur, T.; Poravuth, Y.; Lim, C.; Socheat, D. Efficacy and safety
of dihydroartemisinin-piperaquine (Artekin) in Cambodian children
and adults with uncomplicated falciparum malaria. Clin. Infect. Dis.
2002, 35, 1469–1476. (b) Tran, T. H.; Dolecek, C.; Pham, P. M.;
Nguyen, T. D.; Nguyen, T. T.; Le, H. T.; Dong, T. H.; Tran, T. T.;
Stepniewska, K.; White, N. J.; Farrar, J. Dihydroartemisinin-piper-
aquine against multidrug-resistant Plasmodium falciparum malaria in
Vietnam: Randomised clinical trial. Lancet 2004, 363, 18–22. (c)
Ashley, E. A.; Krudsood, S.; Phaiphun, L.; Srivilairit, S.; McGready,
R.; Leowattana, W.; Hutagalung, R.; Wilairatana, P.; Brockman, A.;
Looareesuwan, S.; Nosten, F.; White, N. J. Randomized, controlled
dose-optimization studies of dihydroartemisinin-piperaquine for the
treatment of uncomplicated multidrug-resistant falciparum malaria in
Thailand. J. Infect. Dis. 2004, 190, 1773–1782. (d) Dorsey, G.;
Staedke, S.; Clark, T. D.; Njama-Meya, D.; Nzarubara, B.; Maiteki-
Sebuguzi, C.; Dokomajilar, C.; Kamya, M. R.; Rosenthal, P. J.
Combination therapy for uncomplicated falciparum malaria in Ugandan
children: A randomized trial. JAMA, J. Am. Med. Assoc. 2007, 297,
2210–2219.
(7) (a) O’Neill, P. M.; Mukhtar, A.; Stocks, P. A.; Randle, L. E.; Hindley,
S.; Ward, S. A.; Storr, R. C.; Bickley, J. F.; O’Neil, I. A.; Maggs,
J. L.; Hughes, R. H.; Winstanley, P. A.; Bray, P. G.; Park, B. K.
Isoquine and related amodiaquine analogues: A new generation of
improved 4-aminoquinoline antimalarials. J. Med. Chem. 2003, 46,
4933–4945. (b) Edwards, G.; Biagini, G. A. Resisting resistance:
Dealing with the irrepressible problem of malaria. Br. J. Clin.
Pharmacol. 2006, 61, 690–693.
(8) Lew, V. L.; Tiffert, T.; Ginsburg, H. Excess hemoglobin digestion
and the osmotic stability of Plasmodium falciparum-infected red blood
cells. Blood 2003, 101, 4189–4194.
(19) Gemma, S.; Kukreja, G.; Fattorusso, C.; Persico, M.; Romano, M. P.;
Altarelli, M.; Savini, L.; Campiani, G.; Fattorusso, E.; Basilico, N.;
Taramelli, D.; Yardley, V.; Butini, S. Synthesis of N1-arylidene-N2-
quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents
active against CQ-resistant P. falciparum strains. Bioorg. Med. Chem.
Lett. 2006, 16, 5384–5388.
(9) (a) Fitch, C. D. Ferriprotoporphyrin IX, phospholipids, and the
antimalarial actions of quinoline drugs. Life Sci. 2004, 74, 1957–1972.
(b) Homewood, C. A.; Moore, G. A.; Warhurst, D. C.; Atkinson, E. M.
Purification and some properties of malarial pigment. Ann. Trop. Med.
Parasitol. 1975, 69, 283–287. (c) Slater, A. F. G.; Swiggard, W. J.;
Orton, B. R.; Flitter, W. D.; Goldberg, D. E.; Cerami, A.; Henderson,
G. B. An iron-carboxylate bond links the heme units of malaria
pigment. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 325–329. (d) Pagola,
S.; Stephens, P. W.; Bohle, S. D.; D.; Kosar, A. D.; Madsen, S. K.
The structure of malaria pigment ꢀ-haematin. Nature 2000, 404, 307–
310.
(10) (a) Ginsburg, H.; Famin, O.; Zhang, J.; Krugliak, M. Inhibition of
glutathione-dependent degradation of heme by chloroquine and
amodiaquine as a possible basis for their antimalarial mode of action.
Biochem. Pharmacol. 1998, 56, 1305–1313. (b) Famin, O.; Krugliak,
M.; Ginsburg, H. Kinetics of inhibition of glutathione-mediated
degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem.
Pharmacol. 1999, 58, 59–68.
(20) Tamasi, G.; Chiasserini, L.; Savini, L.; Sega, A.; Cini, R. Structural
study of ribonucleotide reductase inhibitor hydrazones. Synthesis and
X-ray diffraction analysis of a copper(II)-benzoylpyridine-2-quinolinyl
hydrazone complex. J. Inorg. Biochem. 2005, 99, 1347–1359.
(21) El-Behery, M.; El-Twigry, H. Synthesis, magnetic, spectral, and
antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO2(II)
complexes of a new Schiff base hydrazone derived from 7-chloro-4-
hydrazinoquinoline. Spectrochim. Acta, Part A 2007, 66, 28–36.
(22) (a) Sarel, S.; Fizames, C.; Lavelle, F.; Avramovici-Grisaru, S. Domain-
structured N1,N2-derivatized hydrazines as inhibitors of ribonucleoside
diphosphate reductase: Redox-cycling considerations. J. Med. Chem.
1999, 42, 242–248. (b) Richardson, D. R.; Sharpe, P. C.; Lovejoy,
D. B.; Senaratne, D.; Kalinowski, D. S.; Islam, M.; Bernhardt, P. V.
Dipyridyl thiosemicarbazone chelators with potent and selective
antitumor activity form iron complexes with redox activity. J. Med.
Chem. 2006, 49, 6510–6521.
(11) For reviews on redox metabolism in P. falciparum, see: (a) Beckera,
K.; Tilley, L.; Vennerstrom, J. L.; Roberts, D.; Rogerson, S.; Hagai
Ginsburg, H. Oxidative stress in malaria parasite-infected erythrocytes:
host-parasite interactions. Int. J. Parasitol. 2004, 34, 163–189. (b)
Müller, S. Redox and antioxidant systems of the malaria parasite
Plasmodium falciparum. Mol. Microbiol. 2004, 53, 1291–1305.
(23) Egan, J. T.; Rossa, D. C.; Adams, P. A. Quinoline anti-malarial drugs
inhibit spontaneous formation of ꢀ-haematin (malaria pigment). FEBS
Lett. 1994, 352, 54–57.