C O M M U N I C A T I O N S
Kobayashi, S., Ed.; Springer: Berlin, 1999; pp 119-154. (c) Ephritikhine,
M. Chem. ReV. 1997, 97, 2193-2242. (d) Molander, G. A. Chem. ReV.
1992, 92, 29-68.
species usually work as metal transfer reagents toward 1,6-enynes
24 to allow intramolecular cyclization, producing 27 via metalacycle
26,7,12,13 instead of (â-metaloethyl)metalation (eq 1). In contrast,
with the newly developed reagent 1, 1,6-enyne 28 underwent clean
(â-metaloethyl)metalation to give 29 unaccompanied by the cyclized
product 30 (eq 2).
(2) (a) Evans, W. J.; Meadows, J. H.; Hunter, W. E.; Atwood, J. L. J. Am.
Chem. Soc. 1984, 106, 1291-1300. (b) Molander, G. A.; Hoberg, J. O.
J. Org. Chem. 1992, 57, 3266-3268. See also: (c) Zhang, L.; Luo, Y.;
Hou, Z. J. Am. Chem. Soc. 2005, 127, 14562-14563.
(3) (a) Molander, G. A.; Retsch, W. H. J. Am. Chem. Soc. 1997, 119, 8817-
8825. (b) Molander, G. A.; Dowdy, E. D. J. Org. Chem. 1998, 63, 3386-
3396. (c) Muci, A. R.; Bercaw, J. E. Tetrahedron Lett. 2000, 41, 7609-
7612.
(4) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673-686. (b) Kim,
J. Y.; Livinghouse, T. Org. Lett. 2005, 7, 1737-1739. (c) Gribkov, D.
V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748-
3759. (d) Kim, H.; Livinghouse, T.; Shim, J. H.; Lee, S. G.; Lee, P. H.
AdV. Synth. Catal. 2006, 348, 701-704.
(5) For 1,2-dimetalated ethanes that attract interest in organometalic and
theoretical chemistry, see: (Li): (a) So, S. P. J. Organomet. Chem. 1989,
361, 283-288. (b) van Eikema Hommes, N. J. R.; Bickelhaupt, F.;
Klumpp, G. W. Angew. Chem., Int. Ed. Engl. 1988, 27, 1083-1084. (c)
Schleyer, P.; von R.; Kos, A. J.; Kaufmann, E. J. Am. Chem. Soc. 1983,
105, 7617-7623. (d) Kos, A. J.; Jemmis, E. D.; Schleyer, P. von R.;
Gleiter, R.; Fischbach, U.; Pople, J. A. J. Am. Chem. Soc. 1981, 103,
4996-5002. (Li, Na, K): (e) Alikhani, M. E.; Hannachi, Y.; Manceron,
L.; Bouteiller, Y. J. Chem. Phys. 1995, 103, 10128-10136. (Al): (f) So,
S. P. J. Organomet. Chem. 1991, 420, 293-301. (g) Olah, G. A.; Farooq,
O.; Farnia, S. M. F.; Bruce, M. R.; Clouet, F. L.; Morton, P. R.; Prakash,
G. K. S.; Stevens, R. C.; Bau, R.; Lammertsma, K.; Suzer, S.; Andrews,
L. J. Am. Chem. Soc. 1988, 110, 3231-3238. (Cu): (h) Bo¨hme, M.;
Wagener, T.; Frenking, G. J. Organomet. Chem. 1996, 520, 31-43.
(Mg): (i) van Eikema Hommes, N. J. R.; Bickelhaupt, F.; Klumpp, G.
W. Recl. TraV. Chim. Pays-Bas 1988, 107, 393-394. (Zr): (j) Siedle, A.
R.; Newmark, R. A.; Schroepfer, J. N.; Lyon, P. A. Organometallics 1991,
10, 400-404. (Si, Sn, Ge): (k) Matsubara, H.; Schiesser, C. H. J. Org.
Chem. 2003, 68, 9299-9309. (l) Barrau, J.; Hamida, N. B.; Agrebi, A.;
Satge, J. Organometallics 1989, 8, 1585-1593. (m) Henry, M. C.; Noltes,
J. G. J. Am. Chem. Soc. 1960, 82, 558-561. (Ir): (n) Hetterscheid, D. G.
H.; Kaiser, J.; Reijerse, E.; Peters, T. P. J.; Thewissen, S.; Blok, A. N. J.;
Smits, J. M. M.; de Gelder, R.; de Bruin, B. J. Am. Chem. Soc. 2005,
127, 1895-1905.
To confirm the nucleophilic nature of this reagent, we investi-
gated its reaction with an electrophile. Actually the reagent 1
underwent double addition to ethyl decanoate to produce 1-nonyl-
1-cyclopropanol in one pot, albeit in a low product yield around
20%. After some tuning of its reagent composition,10 yttrium-based
reagent 1 gained improved product yields as shown in eq 3. Even
the R,â-olefinic and -acetylenic esters 31c-e afforded cyclopro-
panols 32c-e uniformly in satisfactory yields, which is not
attainable with the aforementioned 1,2-dimetalated ethane 25.14
Similarly, the reagent 1 and 5-alkenoate 33 cleanly afforded 34,
without contamination with 35 that is usually observed in the
reaction with 25.14
(6) For a synthetically useful 1,2-dimetalated ethane consisting of Mg and
Si, see: (a) Klos, A. M.; Heintzelman, G. R.; Weinreb, S. M. J. Org.
Chem. 1997, 62, 3758-3761. (b) Wilson, S. R.; Shedrinsky, A. J. Org.
Chem. 1982, 47, 1983-1984.
(7) For reviews on group 4 metal-ethylene complexes that could work as
synthetically useful 1,2-dimetalated ethanes, see: (a) Merck, I., Ed.
Titanium and Zirconium in Organic Synthesis; Wiley-VCH: Weinheim
2002. (b) Sato, F.; Urabe, H.; Okamoto, S. Chem. ReV. 2000, 100, 2835-
2886. (c) Kulinkovich, O. G.; de Meijere, A. Chem. ReV. 2000, 100, 2789-
2834. (d) Negishi, E. In ComprehensiVe Organic Synthesis; Trost, B. M.;
Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp 1163-1184.
For a representative example as a conjunctive reagent, see: (e) Lipshutz,
B. H.; Segi, M. Tetrahedron 1995, 51, 4407-4420.
(8) (a) den Haan, K. H.; Teuben, J. H. J. Organomet. Chem. 1987, 322, 321-
329. (b) Evans, W. J.; Meadows, J. H. In Organometallic Syntheses; King,
R. B., Eisch, J. J., Eds.; Academic Press: New York, 1986; Vol. 3, pp
1-8.
(9) The reagent 1 that had been stored under argon for one day at room
temperature did not give the product 7 upon reaction with 5. Attempted
generation of 1,2-dimetalated propane from (E)- or (Z)-1-propenylmag-
nesium bromide and its addition to 5 are so far unsuccessful.
(10) For experimental details, see the Supporting Information.
(11) Bromide 17 is a known key intermediate for the synthesis of an anticancer
medicine, tamoxifen. Miller, R. B. A.; Hassan, M. I. J. Org. Chem. 1985,
50, 2121-2123.
In summary, a 1,2-dimetalated ethane was conveniently generated
by an yttrium-based multimetallic reagent system. It has new
characteristics that are complementary to those of the existing 1,2-
dimetalated ethanes already used in organic synthesis. Further
synthetic applications are now under investigation.
(12) (a) Fillery, S. F.; Gordon, G. J.; Lucker, T.; Whitby, R. J. Pure Appl.
Chem. 1997, 69, 633-638. (b) Grossman, R. B.; Buchwald, S. L. J. Org.
Chem. 1992, 57, 5803-5805.
(13) For a recent review on enyne cyclization, see: Aubert, C.; Buisine, O.;
Malacria, M. Chem. ReV. 2002, 102, 813-834.
Acknowledgment. This work was supported, in part, by a
Grant-in-Aid for Scientific Research on Priority Area 16073208
from the Ministry of Education, Culture, Sports, Science and
Technology, Japan. R.T. thanks the Japan Society for the Promotion
of Science for a Research Fellowship for Young Scientists.
(14) Upon reaction with 25 (M ) Ti(OR)2), R,â-unsaturated esters afforded
the corresponding 1-alkenyl (or alkynyl)-1-cyclopropanols only in 11-
26% yields: (a) Kulinkovich, O. G.; de Meijere, A. Chem. ReV. 2000,
100, 2797-2799. (b) de Meijere, A.; Kozhushkov, S. I.; Savchenko, A.
I. In Titanium and Zirconium in Organic Synthesis; Merck, I., Ed.; Wiley-
VCH: Weinheim, 2002; pp 394-395. (c) de Meijere, A.; Kozhushkov,
S. I.; Savchenko, A. I. J. Organomet. Chem. 2004, 689, 2033-2055. (d)
Racouchot, S.; Sylvestre, I.; Ollivier, J.; Kozyrkov, Y. Y.; Pukin, A.;
Kulinkovich, O. G.; Salau¨n, J. Eur. J. Org. Chem. 2002, 2160-2176.
These low yields most likely come from the metal transfer from 25 to the
carbon-carbon unsaturated bond of these substrates: (e) Urabe, H.;
Suzuki, K.; Sato, F. J. Am. Chem. Soc. 1997, 119, 10014-10027. (f)
Hamada, T.; Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 1999,
121, 7342-7344.
Supporting Information Available: Experimental procedures and
physical properties of products. This material is available free of charge
References
(1) For reviews, see: (a) Molander, G. A.; Romero, J. A. C. Chem. ReV.
2002, 102, 2161-2185 and references cited therein. (b) Molander, G. A.;
Dowdy, E. D. In Lanthanides: Chemistry and Use in Organic Synthesis;
JA077992U
9
J. AM. CHEM. SOC. VOL. 130, NO. 10, 2008 2905