T. Hari Babu et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1659–1662
1661
10. Matsui, T.; Ogunwande, I. A.; Abesundara, K. J. M.;
Matsumoto, K. Mini. Rev. Med. Chem. 2006, 6, 109.
11. (a) Suresh Babu, K.; Tiwari, A. K.; Srinivas, P. V.; Ali, A.
Z.; China Raju, B.; Rao, J. M. Bioorg. Med. Chem. Lett.
2004, 14, 3841; (b) Rao, A. S.; Srinivas, P. V.; Tiwari, K.;
Vanka, U. M. S.; Rao, V. S.; Dasari, K. R.; Rao, J. M.
J. Chromatogr. B 2007, 855, 166; (c) Gowri, P. M.; Tiwari,
A. K.; Ali, A. Z.; Rao, J. M. Phytother. Res. 2007, 21, 796.
12. Rao, J. M.; Suresh Babu, K.; Tiwari, A. K.; Hari Babu,
T.; Srinivas, P. V.; Kumar, S. P.; Sastry, B. S.; Ali, A. Z.;
Yadav, J. S. Patent NF-201/05 PT-480 0477/DEC/2006.
13. (a) Tapzergyar, E. G. Austrian Pat. 1996, 246729; (b) Jain, S.
M.; Dhaneshwar, S. R.; Trivedi, P. Indian Drugs 1991, 29, 64.
14. General experimental procedure. A mixture of para-form-
aldehyde (0.352 mmol) and primary or secondary amine
(0.352 mmol) in 15 ml of 2-propanol was stirred at 60 ꢁC
untill complete homogenization. The solution obtained
was added slowly to a solution of (0.352 mmol) oroxylin A
(1) in 2-propanol and the reaction mixture was refluxed for
1–2 h. After completion, the reaction mixture was con-
centrated and the residue was purified by silica gel column
chromatography (60–120 mesh) to afford (1a–1j) yellow
solids in very good yields (70–85%).
intestinal a-glucosidase inhibitory activity (2–4 times).
Perusal of IC50 values shows that compound 1b is most
active, within the set, followed by compounds 1i, 1d and
1a. Concerning the structural features of the active
Mannich bases, our data indicate that the minimal
structural requirement for a-glucosidase inhibition
activity is 5,7-dihydroxy-6-methoxy groups on the
A-ring of the flavanoid. Alicyclic amine (piperzinyl or
morpholinyl ring) substituents significantly improve
intestinal a-glucosidase inhibitory potential of the
parent compound wherein N-methyl piperzinyl (1b)
and piperidinyl (1i) substitutions represent the best fit,
respectively. It is interesting to note that except piperzi-
nyl substitutions (1b and 1d) no other substitutions
could improve the yeast a-glucosidase inhibitory poten-
tial of oroxylin A. Molecular recognition in the target-
binding site in yeast a-glucosidase and rat intestinal
a-glucosidase may be the reason for different behavior
of these compounds.17
Glucosidase inhibitors have proved their usefulness in
reducing postprandial hyperglycemic excursion in both
type-I and type-II diabetes. Current interest in these
inhibitors has further been extended to a diverse range
of diseases including lysomal storage disorders and can-
cer. Special attention being focused to those compounds
with anti-HIV activity.18 Though none of the com-
pounds in the present study could displayed comparable
activity to those of the reference compounds, isolation
of suitable glycosidase inhibitors from natural sources
and/or their chemical synthesis provides biochemical
tools for the elucidation of enzyme mechanistic activity
through the variations in potential inhibitor structural
information.
15. NMR data:Compound (1a). 1H NMR (300 MHz, CDCl3):
d 12.42 (1H, s, OH), 7.86–7.82 (2H, m, H-20, 60), 7.59–7.52
(3H, m, H-30, 40, 50), 6.60 (1H, s, H-3), 4.08 (2H, s, H-100),
3.96 (3H, s, OMe), 3.84–3.80 (4H, m, H-300, 700), 2.76–2.71
(4H, m, H-400, 600). 13C NMR (75 MHz, CDCl3): d 182.56,
152.55, 150.05, 132.50,132.10, 131.15, 130.90, 125.95,
125.50, 104.54, 98.75, 66.55, 60.55, 54.25, 52.00. FABMS:
384 (M+ + 1).
Compound (1b). 1H NMR (300 MHz, CDCl3): d 12.10
(1H, s, OH), 7.82–7.78 (2H, m, H-20, 60), 7.55–7.49 (3H,
m, H-30, 40, 50), 6.56 (1H, s, H-3), 4.05 (2H, s, H-100), 3.96
(3H, s, OMe), 2.78–2.75 (4H, m, H-300, 700), 2.59–2.55 (4H,
m, H-400, 600), 2.30 (3H, s, N–Me). FABMS: 397 (M+ + 1).
Compound (1c). 1H NMR (300 MHz, CDCl3 + MeOH-d4):
d 7.75–7.60 (4H, m, ph), 7.55–7.42 (2H, m, ph), 7.38–7.28
(4H, m, ph), 6.58 (1H, s, H-3), 4.25 (2H, s, H-100), 4.09
(2H, s, CH2-Ph), 3.82 (3H, s, OMe). FABMS: 404
(M+ + 1).
Acknowledgment
Compound (1d): 1H NMR (300 MHz, CDCl3): d 12.49
(1H, s, OH), 7.88–7.82 (2H, m, H-20, 60), 7.52–7.48 (3H,
m, H-30, 40, 50), 6.60 (1H, s, H-3), 4.08 (2H, s, H-100), 3.96
(3H, s, OMe), 3.56–3.52 (4H, m, H-300, 700), 2.74–2.70 (4H,
m, H-400, 600), 1.48 (9H, s, 3· Me). 13C NMR (75 MHz,
CDCl3): d 183.00, 163.55, 153.25, 150.15, 150.06, 132.00,
130.15, 130.00, 129.50, 126.55, 106.50, 105.15, 99.55,
99.00, 80.55, 61.00, 54.56, 52.50, 43.50, 28.20. FABMS:
483 (M+ + 1).
The Authors thank Dr. J.S. Yadav, Director, IICT for
his constant encouragement.
References and notes
1. Hoffmann, J.; Splenger, M. Diabetes Care 1994, 17, 561.
2. Fernandes, B.; Sagman, U.; Auger, M.; Demetrio, M.;
Dennism, J. W. Cancer Res. 1991, 51, 718.
3. Metha, A.; Zitzmann, N.; Rudd, P. M.; Block, T. M.;
Dwek, R. A. FEBS Lett. 1998, 430, 17.
4. Maki, K. C.; Carson, M. L.; Miller, M. P.; Turowski, M.;
Bell, M.; Wilder, D. M.; Reeves, M. S. Diabetes Care
2007, 30, 1039.
5. Bernaeki, R. J.; Niedbala, M. J.; Korytryk, W. Cancer
Metastasis Rev. 1985, 4, 81.
6. Gruters, R. A.; Neefjes, J. J.; Tersmetti, M.; De Goede, R.
E. Y.; Tulp, A.; Huisman, H. G.; Miedeme, F.; Ploegh, H.
C. Nature 1987, 330, 74.
7. Paratta, J. A. Bealing Plants of Peninsular India 2001, 168.
8. (a) Ali, R.; Houghton, P. J.; Raman, A.; Hoult, J. R. S.
Phytomedicine 1998, 5, 375; (b) Houghton, P. J.; Matali,
R.; Azizol, M. Pharmacol. Lett. 1997, 7, 96.
9. (a) Gao, H.; Nishioka, T.; Kawabata, J.; Kasai, T. Biosci.
Biotechnol. Biochem. 2004, 68, 369; (b) Gao, H.; Kawa-
bata, J. Bioorg. Med. Chem. 2005, 13, 1661.
Compound (1e). 1H NMR (300 MHz, CDCl3): d 7.81–7.71
(3H, m, H-20, 60, 500), 7.55–7.48 (3H, m, H-30, 40, 50), 6.61
(1H, s, H-3), 6.32 (1H, d, J = 2 Hz, H-600), 6.25 (1H, d,
J = 2 Hz, H-700), 4.05 (2H, s, H-100), 3.95 (3H, s, OMe),
3.75 (2H, s, H-300), 2.42 (3H, s, N–Me). FABMS: 408
(M+ + 1).
1
Compound (1f). H NMR (300 MHz, CDCl3): d 7.25–7.51
(10H, m, Ph), 6.45 (1H, s, H-3), 4.12 (1H, s, H-300), 4.05
(2H, s, H-100), 3.83 (3H, s, OMe), 1.98 (3H, d, J = 5 Hz,
Me). FABMS: 418 (M+ + 1).
Compound (1g). 1H NMR (300 MHz, CDCl3): d 12.49
(1H, s, OH), 7.86–7.80 (2H, m, H-20, 60), 7.56–7.50 (3H,
m, H-30, 40, 50), 6.62 (1H, s, H-3), 4.10 (2H, s, H-100), 3.94
(3H, s, OMe), 2.80 (2H, t, J = 4 Hz, H-300), 1.65–1.55 (2H,
m, H-400), 1.47–1.36 (2H, m, H-500), 0.99-0.94 (3H, t,
J = 7 Hz, H-600). 13C NMR (75 MHz, CDCl3): d 183.50,
158.00, 152.25, 132.78, 131.55, 131.15, 129.50, 126.50,
105.55, 99.00, 98.50, 60.55, 51.55, 50.25, 33.50, 20.65,
14.55. FABMS: 370 (M+ + 1).