S. K. Pandey et al. / Tetrahedron Letters 49 (2008) 3297–3299
3299
Yaegashi, H.; Sato, Z. J. Antibiot. 1994, 47, 765; (d) Morisaki, N.;
Mitsui, Y.; Yamashita, Y.; Koiso, Y.; Shirai, R.; Hashimoto, Y.;
Iwasaki, S. J. Antibiot. 1998, 51, 423.
and diastereomeric excess using Jacobsen’s HKR as the key
step. The syn- and anti-configuration of the 1,3-amino-
alcohol moiety can be manipulated simply by changing
the Jacobsen’s catalyst in the hydrolytic kinetic resolution
step. The target compound 12 has been synthesized from
5 in 9 steps and in 9.3% overall yield. The synthetic strategy
described here has significant potential for stereochemical
variations and further extension to other stereoisomers,
and analogues, for example (2S,4S,6R)-4-hydroxy-5-phenyl-
sulfinyl-norvaline 4. Currently, studies are in progress in
this direction.
9. For recent use of this versatile chiral building block, see: Catalano, J.
G.; Deaton, D. N.; Furfine, E. S.; Hassell, A. M.; McFayden, R. B.;
Miller, A. B.; Miller, L. R.; Shewchuk, L. M.; Willard, D. H.; Wright,
L. L. Bioorg. Med. Chem. Lett. 2004, 14, 275.
10. (a) Talbot, G.; Gaudry, R.; Berlinguet, L. Can. J. Chem. 1956, 34,
911; (b) Mizusaki, K.; Makisumi, S. Bull. Chem. Soc. Jpn. 1981, 54,
470; (c) Jackson, R. F. W.; Wood, A.; Wythes, M. J. Synlett 1990,
735; (d) Hausler, J. Liebigs Ann. Chem. 1992, 1231; (e) Jackson, R. F.
W.; Rettie, A. B.; Wood, A.; Wythes, M. J. J. Chem. Soc., Perkin
Trans.
1 1994, 1719; (f) Girard, A.; Greck, C.; Genet, J. P.
Tetrahedron Lett. 1998, 39, 4259; (g) Mues, H.; Kazmaier, U.
Synthesis 2001, 487.
Acknowledgements
11. Rudolph, J.; Hannig, F.; Theis, H.; Wischnat, R. Org. Lett. 2001, 3,
3153.
12. (a) Schmidt, U.; Meyer, R.; Leitenberger, V.; Stabler, F.; Lieberkn-
echt, A. Synthesis 1991, 409; (b) Lepine, R.; Carbonnelle, A.-C.; Zhu,
J. Synlett 2003, 1455.
13. Paintner, F. F.; Allmendinger, L.; Bauschke, G.; Klemann, P. Org.
Lett. 2005, 7, 1423.
S.K.P. thanks CSIR New Delhi for a research fellow-
ship. We are grateful to Dr. Ganesh Pandey for his support
and encouragement. Financial support from DST, New
Delhi (Project Grant No. SR/S1/OC-40/2003) is gratefully
acknowledged. This is NCL Communication No. 6707.
14. Pandey, S. K.; Kumar, P. Synlett 2007, 1894 and references cited
therein.
15. Pandey, S. K.; Kumar, P. Tetrahedron Lett. 2006, 47, 4167.
16. (a) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.;
Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am.
Chem. Soc. 2002, 124, 1307; (b) Hansen, T. V.; Vaagen, V.; Partali,
V.; Anthonsen, H. W.; Anthonsen, T. Tetrahedron: Asymmetry 1995,
6, 499.
References and notes
1. (a) Fujita, Y. Bull. Chem. Soc. Jpn. 1959, 32, 439; (b) Makisumi, S. J.
Biochem. 1961, 49, 284.
2. (a) Bell, E. A.; Tirimanna, A. S. L. Nature 1963, 197, 901; (b) Bell, E.
A.; Tirimanna, A. S. L. Biochem. J. 1964, 91, 356.
3. Denning, D. W. J. Antimicrob. Chemother. 1997, 40, 611.
4. Kondo, S.; Meguriya, N.; Mogi, H.; Aota, T.; Miura, K.; Fujii, T.;
Hayashi, I.; Makino, K.; Yamamoto, M.; Nakajima, N. J. Antibiot.
1980, 33, 533.
5. Ezaki, M.; Iwami, M.; Yamashita, M.; Hashimoto, S.; Komori, T.;
Umehara, K.; Mine, Y.; Kohsaka, M.; Aoki, H.; Imanaka, I. J.
Antibiot. 1985, 38, 1453.
6. (a) Pruess, D. L.; Kellett, M. J. Antibiot. 1983, 36, 208; (b) Evans, R.
H., Jr.; Ax, H.; Jacoby, A.; Williams, T. H.; Jenkis, E.; Scannell, J. P.
J. Antibiot. 1983, 36, 213; (c) Muller, J.-C.; Toome, V.; Pruess, D. L.;
Blount, J. F.; Weigele, M. J. Antibiot. 1983, 36, 217.
7. Shiro, Y.; Kato, K.; Fujii, M.; Idab, Y.; Akitaa, H. Tetrahedron 2006,
62, 8687 and references cited therein.
8. (a) Koiso, Y.; Natori, M.; Iwasaki, S.; Sato, S.; Sonoda, R.; Fujita,
Y.; Yaegashi, H.; Sato, Z. Tetrahedron Lett. 1992, 33, 4157; (b) Koiso,
Y.; Morisaki, N.; Yamashita, Y.; Mitsui, Y.; Shirai, R.; Hashimoto,
Y.; Iwasaki, S. J. Antibiot. 1998, 51, 418; (c) Koiso, Y.; Li, Y.;
Iwasaki, S.; Hanaoka, K.; Kobayashi, T.; Sonoda, R.; Fujita, Y.;
17. The diastereoselectivity was determined from 1H and 13C NMR
spectral data.
25
18. Spectral data of compound 8a: Pale yellow liquid, ½aꢀD +49 (c 1.00,
CHCl3). IR (CHCl3): ~m ¼ 2922, 2115, 1601, 1453, 1272 cmꢂ1
.
1H
NMR (200 MHz, CDCl3): dH 1.48–1.61 (m, 1H), 1.75–1.89 (m, 1H),
2.53 (dd, J = 2.78, 5.05 Hz, 1H), 2.84 (t, J = 4.04 Hz, 1H), 3.02–3.11
(m, 1H), 3.53 (dd, J = 7.07, 9.85 Hz, 1H), 3.66 (dd, J = 3.91, 6.31 Hz,
1H), 3.75–3.88 (m, 1H), 4.59 (s, 2H), 7.30–7.38 (m, 5H) ppm. 13C
NMR (50 MHz, CDCl3): dC 34.3, 47.2, 49.2, 59.4, 72.6, 73.2, 127.4,
127.7, 128.3, 137.6 ppm. Anal. Calcd for C12H15N3O2: C, 61.7; H,
6.48; N, 18.01. Found: C, 61.58; H, 6.67; N, 17.69.
25
19. Spectral data of compound 12: ½aꢀD +38 (c 0.50, CHCl3). IR (CHCl3):
~m ¼ 3346, 2910, 1716, 1453 cmꢂ1
.
1H NMR (200 MHz, CDCl3): dH
0.08 (s, 6H), 0.88 (s, 9H), 1.45 (s, 18H), 1.75–1.82 (m, 2H), 2.62–2.89
(m, 1H), 3.61–3.81 (m, 1H), 3.98–4.38 (m, 2H), 4.31–4.62 (m, 1H),
5.49–5.74 (m, 1H) ppm. 13C NMR (50 MHz, CDCl3): dC ꢂ5.1, ꢂ4.7
14.1, 18.0, 22.7, 28.3, 31.9, 42.5, 65.2, 66.3, 80.4, 163.3 ppm. Anal.
Calcd for C21H42N2O7Si: C, 54.52; H, 9.15; N, 6.05%. Found: C,
54.25; H, 9.37; N, 5.75%.