procedure.7 However, due to the weak nucleophilicity of
sulfonamide, harsh acidic conditions and high temperature are
normally required in the condensation reactions.8 These condi-
tions are not compatible with the resulting imines, especially
with those derived from the aliphatic aldehydes because of their
instability and ease of enolization. Although a few existing
indirect methods can be applied to synthesize these N-sulfo-
nylimines,5 it is still desired to find an efficient procedure for
the direct condensation of aldehydes with sulfonyl amides under
mild reaction conditions. We report herein an efficient and
simple procedure for the direct condensation reactions of
aldehydes with N-sulfonyl- and N-sulfinylamides under mild
Barbier-type conditions using benzyl bromide and zinc dust to
synthesize the N-sulfonyl- and N-sulfinylimines.
A Facile Synthesis of N-Sulfonyl and N-Sulfinyl
Aldimines under Barbier-Type Conditions
Renhua Fan,* Dongming Pu, Fengqi Wen, Yang Ye, and
Xiaoli Wang
Department of Chemistry, Fudan UniVersity, 220 Handan
Road, Shanghai 200433, China
ReceiVed January 2, 2008
Multicomponent reactions of aldehydes, amines, and orga-
nometallic reagents are known as a versatile method for the
synthesis of amines.9,10 We have reported a three-component,
one-pot benzylation and allylation of aromatic and aliphatic
(4) (a) For selected examples, see: Mancheño, O. G.; Arrayás, R. G.;
Carretero, J. C. J. Am. Chem. Soc. 2004, 126, 456. (b) Morgan, P. E.; McCague,
R.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 2000, 515. (c) Yao, S.; Johannsen,
M.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 1998, 37, 3121. (d)
Bauer, T.; Szyman´ski, S.; Jez´ewski, A.; Gluzin´ski, P.; Jurczak, J. Tetrahedron:
Asymmetry 1997, 8, 2619. (e) Sisko, J.; Weinreb, S. M. Tetrahedron Lett. 1989,
30, 3037. (f) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. J. Am.
Chem. Soc. 1991, 113, 1713.
A convenient synthesis of N-sulfonyl- and N-sulfinylimines
by the condensation of aldehydes with sulfonyl or sulfinyl
amides in the presence of benzyl bromide and zinc dust at
room temperature under the Barbier-type conditions is
reported. The procedure is lauded by its simplicity and
adaptability to aromatic, R,ꢀ-unsaturated, and aliphatic
aldehydes.
(5) (a) Li, Z. J.; Ren, X. H.; Wei, P.; Wan, H. G.; Shi, Y. H.; Ouyang, P. K.
Green Chem. 2006, 8, 433. (b) Ruano, J. L. G.; Alemán, J.; Parra, A. Org. Lett.
2005, 7, 179. (c) Jian, S. L.; Sharma, V. B.; Sain, B. J. Mol. Catal. A: Chem.
2005, 239, 92. (d) Jin, T.; Feng, G.; Yang, M.; Li, T. Synth. Commun. 2004, 34,
1277. (e) Wolfe, J. P.; Ney, J. E. Org. Lett. 2003, 5, 4607. (f) Lee, K. Y.; Lee,
C. G.; Kim, J. N. Tetrahedron Lett. 2003, 44, 1231. (g) Sugihara, Y.; Iimura,
S.; Nakayama, J. Chem. Commun. 2002, 134. (h) Chemla, F.; Hebbe, V.;
Normant, J. F. Synthesis 2000, 1, 75. (i) Vass, A.; Dudas, J.; Varma, R. S.
Tetrahedron Lett. 1999, 40, 4951. (j) Georg, G. I.; Harriman, G. C. B.; Peterson,
S. A. J. Org. Chem. 1995, 60, 7366. (k) Fujii, T.; Kimura, T.; Furukawa, N.
Tetrahedron Lett. 1995, 36, 1075. (l) Trost, B. M.; Marrs, C. J. Org. Chem.
1991, 56, 6468. (m) Davis, F. A.; Zhou, P.; Lal, G. S. Tetrahedron Lett. 1990,
31, 1653.
N-Sulfonyl- and N-sulfinylimines are of increasing importance
because they are versatile intermediates in organic synthesis.1
As powerful substrates, they can undergo various nucleophilic
addition reactions,2 radical reactions,3 and hetero-Diels–Alder
reactions4 to afford the expected N-sulfonyl- and N-sulfinyla-
mide derivatives. Although there are a variety of methods
developed for the preparation of N-sulfonylimines,5,6 the direct
condensation of aldehydes with sulfonyl amides is still the ideal
(6) (a) Artman, G. D., III; Bartolozzi, A.; Franck, R. W.; Weinreb, S. M.
Synlett 2001, 232. (b) McIntosh, M. C.; Weinreb, S. M. J. Org. Chem. 1993,
58, 4823. (c) Boger, D. L.; Corbett, W. L. J. Org. Chem. 1992, 57, 4777. (d)
Hamley, P.; Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. Synlett
1991, 29. (e) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1990, 55, 39. (f) Melnick,
M. J.; Freyer, A. J.; Weinreb, S. M. Tetrahedron Lett. 1988, 29, 389. (g) Davis,
F. A.; Lamendola, J., Jr.; Nadir, U.; Kluger, E. W.; Sedergran, T. C.; Panunto,
T. W.; Billmers, R.; Jenkins, R., Jr.; Turchi, I. J.; Watson, W. H.; Chen, J. S.;
Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000. (h) Brown, C.; Hudson, R. F.;
Record, K. A. F. J. Chem. Soc., Chem. Commun. 1977, 540. (i) Hudson, B. F.;
Record, K. A. F. J. Chem. Soc., Chem. Commun. 1976, 831. (j) Davis, F. A.;
Kaminski, J. M.; Kluger, E. W.; Freilich, H. S. J. Am. Chem. Soc. 1975, 97,
7085. (k) Kresze, G.; Wucherpfennig, W. Angew. Chem., Int. Ed. 1967, 6, 149.
(l) Albrecht, R.; Kresze, G. Chem. Ber. 1964, 97, 490. (m) Albrecht, R.; Kreaze,
G.; Mlakar, B. Chem. Ber. 1964, 97, 483.
(1) (a) For selected reviews, see: Begue, J. P.; Bonnet-Delpon, D.; Crousse,
B.; Legros, J. Chem. Soc. ReV. 2005, 34, 562. (b) Weinreb, S. M.; Orr, R. K.
Synthesis 2005, 1205. (c) Senananake, C. H.; Krishnamurthy, D.; Lu, Z. H.;
Han, Z.; Gallou, I. Aldrichim. Acta 2005, 38, 93. (d) Zhou, P.; Chen, B. C.;
Davis, F. A. Tetrahedron 2004, 60, 8003. (e) Gohain, M. Synlett 2003, 13, 2097.
(f) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984. (g)
Ellman, J. A. Pure Appl. Chem. 2003, 75, 39. (h) Davis, F. A.; Zhou, P.; Chen,
B. C. Chem. Soc. ReV. 1998, 27, 13. (i) Bloch, R. Chem. ReV. 1998, 98, 1407.
(j) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895. (k) Weinreb,
S. M. Top. Curr. Chem. 1997, 190, 131.
(2) (a) For selected examples, see: Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am.
Chem. Soc. 2006, 128, 2548. (b) Duan, H. F.; Jia, Y. X.; Wang, L. X.; Zhou,
Q. L. Org. Lett. 2006, 8, 2567–2569. (c) Fujisawa, H.; Takahashi, E.; Mukaiyama,
T. Chem. Eur. J. 2006, 12, 5082–5093. (d) Shi, M.; Chen, L. H.; Li, C. Q.
J. Am. Chem. Soc. 2005, 127, 3790. (e) Soeta, T.; Kuriyama, M.; Tomioka, K.
J. Org. Chem. 2005, 70, 297. (f) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc.
2005, 127, 1578. (g) Hayashi, T.; Kawai, M.; Tokunaga, N. Angew. Chem., Int.
Ed. 2004, 43, 6125. (h) Yim, H. K.; Wong, H. N. C. J. Org. Chem. 2004, 69,
2892. (i) Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003,
125, 761. (j) Yanmaka, M.; Nishida, A.; Nagawaka, M. Org. Lett. 2002, 2, 159,
3891. (k) Aggarwal, V.; Alonso, E.; Ferrar, M.; Spey, S. E. J. Org. Chem. 2002,
67, 2335. (l) Yamada, K.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.; Taba, T.;
Tomioka, K. Org. Lett. 2002, 4, 3509. (m) Wang, D. K.; Zhou, Y. G.; Tang, Y.;
Hou, X. L.; Dai, L. X. J. Org. Chem. 1999, 64, 4233.
(7) (a) Love, B. E.; Raje, P. S.; William, T. C., II Synlett 1994, 493. (b)
Love, B. E.; Ren, J. J. Org. Chem. 1993, 58, 5556. (c) Boger, D. L.; Corbett,
W. L.; Curran, T. T.; Kasper, A. M. J. Am. Chem. Soc. 1991, 113, 1713. (d)
Vishwakarma, L. C.; Strinnger, O. D.; Davis, F. A. Org. Synth. 1987, 66, 203.
(8) (a) Wynne, J. H.; Price, S. E.; Rorer, J. R.; Stalick, W. M. Synth. Commun.
2003, 33, 341. (b) Ramand, R. N.; Khan, A. A. Synth. Commun. 2001, 31, 841.
(c) Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561. (d) Davis, F. A.;
ThimmaReddy, R.; Weismiller, M. C. J. Am. Chem. Soc. 1989, 111, 5964. (e)
Jennings, W. B.; Lovely, C. J. Tetrahedron Lett. 1988, 29, 3725. (f) McKay,
W. R.; Proctor, G. R. J. Chem. Soc., Perkin Trans. 1 1981, 2435.
(9) (a) For selected reviews, see: Kleinman, E. F.; Volkmann, R. A. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
Oxford, 1991; Vol. 2, p 975. (b) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93,
2207. (c) Li, A. H.; Dai, L. X.; Aggarwal, V. K. Chem. ReV. 1997, 97, 2431. (d)
Bloch, R. Chem. ReV. 1998, 98, 1407. (e) Kobayashi, S.; Ishitani, H. Chem.
ReV. 1999, 99, 1069. (f) Marshall, J. A. Chem. ReV. 2000, 100, 3163.
(3) Yamada, K. I.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.; Taga, T.; Tomioka,
K. Org. Lett. 2002, 4, 3509.
10.1021/jo800009t CCC: $40.75
Published on Web 03/26/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 3623–3625 3623