G. L. Ellis et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1720–1724
1723
Table 2. Average logP and tPSA of all target compounds
9. Tokuyasu, T.; Masuyama, A.; Nojima, M.; Kim, H. S.;
Wataya, Y. Tetrahedron Lett. 2000, 41, 3145.
Compound
X
Av logP35
tPSA36
10. Opsenica, R.; Angelovski, G.; Pocsfalvi, G.; Juranic, Z.;
Zizak, Z., et al. Bioorg. Med. Chem. 2003, 11, 2761.
11. Dong, Y. X.; Chollet, J.; Matile, H.; Charman, S. A.;
Chiu, F. C. K., et al. J. Med. Chem. 2005, 48, 4953.
12. Tang, Y. Q.; Dong, Y. X.; Wittlin, S.; Charman, S. A.;
Chollet, J., et al. Bioorg. Med. Chem. Lett. 2007, 17, 1260.
13. Griesbeck, A. G.; El-Idreesy, T. T. J. Chin. Chem. Soc.-
TAIP 2006, 53, 1469.
14. Griesbeck, A. G.; El-Idreesy, T. T.; Bartoschek, A. Pure
Appl. Chem. 2005, 77, 1059.
15. Benoit-Vical, F.; Lelievre, J.; Berry, A.; Deymier, C.;
Dechy-Cabaret, O., et al. Antimicrob. Agents. Chemother.
2007, 51, 1463.
2
—
—
2.20 1.12
1.16 0.91
3.93 1.10
4.01 1.17
4.79 1.16
3.46 1.14
3.75 1.11
2.65 1.35
4.20 1.24
4.95 1.24
4.05 1.30
63.24
66.48
36.94
36.94
36.94
60.73
63.24
71.08
36.94
36.94
63.24
3
12a
12b
12c
12d
12e
12f
20a
20b
20c
H
F
CF3
CN
CO2Me
SO2Me
F
CF3
CO2Me
16. Dong, Y. X.; Vennerstrom, J. L. Abstr. Pap. Am. Chem.
Soc. 2005, 230, U2617.
17. Jin, H. X.; Zhang, Q.; Kim, H. S.; Wataya, Y.; Liu, H. H.,
et al. Tetrahedron 2006, 62, 7699.
18. Tang, Y. Q.; Dong, Y. X.; Wang, X. F.; Sriraghavan, K.;
Wood, J. K., et al. J. Org. Chem. 2005, 70, 5103.
19. Vennerstrom, J. L.; Dong, Y. C.; Chollet, J.; Matile, H.
U.S. Patent 6,489,199, 2001.
20. Dong, Y. X.; Vennerstrom, J. L. J. Org. Chem. 1998, 63,
8582.
21. Dong, Y. X.; Matile, H.; Chollet, J.; Kaminsky, R.;
Wood, J. K., et al. J. Med. Chem. 1999, 42, 1477.
22. Tsuchiya, K.; Hamada, Y.; Masuyama, A.; Nojima, M.;
McCullough, K. J., et al. Tetrahedron Lett. 1999, 40,
4077.
Table 3. In vitro antimalarial activity of the bridged 1,2,4,5-tetraox-
anes against the 3D7 strain of Plasmodium falciparum
Compound
Mean IC50 (nM SD)
Artemether
Artemisinin
12a
3.20 1.97
9.20 1.97
51.85 22.84
68.25 25.24
52.35 18.17
99.65 2.19
93.50 27.86
43.40 1.41
42.80 3.68
116.18 40.52
12b
12c
12d
12e
20a
20b
20c
23. Vennerstrom, J. L.; Dong, Y. X.; Andersen, S. L.; Ager,
A. L.; Fu, H. N., et al. J. Med. Chem. 2000, 43, 2753.
24. Opsenica, D.; Pocsfalvi, G.; Milhous, W. K.; Solaja, B. A.
J. Serb. Chem. Soc. 2002, 67, 465.
25. Iskra, J.; Bonnet-Delpon, D.; Begue, J. P. Tetrahedron
Lett. 2003, 44, 6309.
26. Terent’ev, A. O.; Kutkin, A. V.; Starikova, Z. A.; Antipin,
M. Y.; Ogibin, Y. N., et al. Synthesis-Stuttgart 2004,
2356.
The in vitro antimalarial activity of these compounds
was measured versus the 3D7 strain of Plasmodium
falciparum.37 The majority of these 1,2,4,5-tetraoxanes
are active in the 40–100 nM IC50 range. Work is cur-
rently underway to further enhance potency within this
1,2,4,5-tetraoxane template.
27. Masuyama, A.; Wu, J. M.; Nojima, M.; Kim, H. S.;
Wataya, Y. Mini-Rev. Med. Chem. 2005, 5, 1035.
28. Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.;
Bray, P. G., et al. Org. Biomol. Chem. 2006, 4, 4431.
29. Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.;
Bray, P. G., et al. Org. Biomol. Chem. 2007, 5, 708.
30. Kim, H. S.; Nagai, Y.; Ono, K.; Begum, K.; Wataya, Y.,
et al. J. Med. Chem. 2001, 44, 2357.
To conclude, an efficient five-step synthesis of bridged
1,2,4,5-tetraoxanes has been achieved to generate a
range of tetraoxanes with good antimalarial activity.
The compounds synthesized have two points of poten-
tial diversity allowing several different functional groups
to be investigated in future research.
31. General procedure for the synthesis of bridged tetraoxanes:
gem-Dihydroperoxide (1.09 mmol) was dissolved in
EtOAc (7.25 ml) and Ag2O (2.18 mmol, 2.0 equiv) added.
A solution of diiodo alkane/alkene (1.09 mmol, 1.0 equiv)
in EtOAc (3.60 ml) was added dropwise over 15 min. The
reaction was then stirred at room temperature overnight
and filtered through a Celite pad. Ether (50 ml) was added
and the resulting solution was washed with 3% aq sodium
thiosulfate, NaHCO3 aq and brine. The organic layer was
dried over MgSO4, evaporated and purified by flash
column chromatography. Procedure for the synthesis of
compound 3. This product was prepared in 53% as a light
yellow powder according to the general procedure for the
preparation of bridged tetraoxanes. The product was
purified by flash column chromatography using ethyl
acetate/DCM (1:1, v/v, Rf = 0.17) as the eluent. Mp 90–
92 ꢁC tmax (CHCl3)/cmÀ1 1433.2, 1632.5, 2858.9, 2913.2,
3016.6 1H NMR (400 MHz, CDCl3) dH, 1.11–1.42 (m,
2 H, CH2), 1.45–1.80 (m, 4H, CH2), 1.85–1.89 (m, 1H,
CH), 2.08–2.31 (m, 4H, CH2), 2.22 (d, 2H, J = 6.7 Hz,
CH2), 3.48 (t, 2H, J = 4.8 Hz, NCH2), 3.55–3.72 (br s, 6H,
NCH2/CH2O), 3.98–4.18 (m, 2H, CH2O), 4.28–4.47 (m,
Acknowledgments
This work was supported by a grant from the EU (Anti-
mal, FP6 Malaria Drugs Initiative).
References and notes
1. Haynes, R. K.; Krishna, S. Microbes Infect. 2004, 6, 1339.
2. Haynes, R. K. Curr. Top. Med. Chem. 2006, 6, 509.
3. Haynes, R. K. Curr. Opin. Infect. Dis. 2001, 14, 719.
4. O’Neill, P. M.; Posner, G. H. J. Med. Chem. 2004, 47, 2945.
5. Vennerstrom, J. L. J. Med. Chem. 1989, 32, 64.
6. Vennerstrom, J. L.; Fu, H. N.; Ellis, W. Y.; Ager, A. L.;
Wood, J. K., et al. J. Med. Chem. 1992, 35, 3023.
7. Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman,
S. A.; Chiu, F. C. K., et al. Nature 2004, 430, 900.
8. Nonami, Y.; Tokuyasu, T.; Masuyama, A.; Nojima, M.;
McCullough, K. J., et al. Tetrahedron Lett. 2000, 41,
4681.