NbCl5/Primary Amine Catalyzed Biginelli Reaction
[2]
[3]
a) A. Dondoni, A. Massi, Acc. Chem. Res. 2006, 39, 451–463;
b) Z. D. Aron, L. E. Overman, Chem. Commun. 2004, 253–265;
c) C. O. Kappe, Acc. Chem. Res. 2000, 33, 879–888.
a) K. S. Atwal, G. C. Rovnyak, B. C. O’Reilly, J. Schwartz, J.
Org. Chem. 1989, 54, 5898–5907; b) C. O. Kappe, W. M. F. Fab-
ian, M. A. Semones, Tetrahedron 1997, 53, 2803–2816; c) C. O.
Kappe, Eur. J. Med. Chem. 2000, 35, 1043–1052; d) C. Black-
burn, B. Guan, J. Brown, C. Cullis, S. M. Condon, T. J. Jenkins,
S. Peluso, Y. Ye, R. E. Gimeno, S. Punreddy, Y. Sun, H. Wu,
B. Hubbard, V. Kaushik, P. Tummino, P. Sanchetti, D. Yu Sun,
T. Daniels, E. Tozzo, S. K. Balanic, P. Raman, Bioorg. Med.
Chem. Lett. 2006, 16, 3504–3509.
enantioselectivities under mild reaction conditions. It is an
ideal cooperative catalyst system in which NbCl5 is respon-
sible for the reactivity, and the chiral primary amine, QN-
NH2, introduces the stereoselectivity to this reaction. These
studies allow further adjustments to both organocatalysts
and Lewis acids for further design and optimization for the
enantioselective Biginelli reaction and expand the applica-
tion of this novel cooperative catalyst system in asymmetric
catalysis.
[4]
[5]
M. Brands, R. Endermann, R. Gahlmann, J. Krüger, S. Rad-
datz, Bioorg. Med. Chem. Lett. 2003, 13, 241–245.
a) B. B. Snider, Z. Shi, J. Org. Chem. 1993, 58, 3828–3839; b)
L. Heys, C. G. Moore, P. J. Murphy, Chem. Soc. Rev. 2000, 29,
57–67.
Experimental Section
General Remarks: All reagents and solvents were used directly with-
[6]
Recent reviews: a) Z. J. Quan, Z. Zhang, Y. X. Da, X. C. Wang,
Chin. J. Org. Chem. 2009, 29, 876–883; b) R. Jindal, S. Bajaj,
Curr. Org. Chem. 2008, 12, 836–849; c) A. Saini, S. Kumar, J. S.
Sandhu, J. Indian Chem. Soc. 2007, 84, 959–970.
C. O. Kappe, A. Stadler, Org. React. 2004, 63, 1–116.
a) A. Dondoni, A. Massi, S. Sabbatini, V. Bertolasi, J. Org.
Chem. 2002, 67, 6979–6994; b) A. Dondoni, A. Massi, S. Sab-
batini, Tetrahedron Lett. 2002, 43, 5913–5916; c) B. Schnell, W.
Krenn, K. Faber, C. O. Kappe, J. Chem. Soc. Perkin Trans. 1
2000, 4382–4389; d) B. Schnell, U. T. Strauss, P. Verdino, K.
Faber, C. O. Kappe, Tetrahedron: Asymmetry 2000, 11, 1449–
1453; e) A. Dondoni, A. Massi, Acc. Chem. Res. 2006, 39, 451–
463.
a) A. Dondoni, A. Massi, S. Sabbatini, V. Bertolasi, J. Org.
Chem. 2002, 67, 6979–6994; b) O. Munˇoz-Munnˇiz, E. Juaristi,
ARKIVOC 2003, xi, 16–26; c) S. Lou, B. M. Taoka, A. Ting,
S. E. Schaus, J. Am. Chem. Soc. 2005, 127, 11256–11257; d) S.
Lou, P. Dai, S. E. Schaus, J. Org. Chem. 2007, 72, 9998–10008;
e) J. M. Goss, S. E. Schaus, J. Org. Chem. 2008, 73, 7651–7656;
f) L. D. S. Yadav, A. Rai, V. K. Rai, C. Awasthi, Tetrahedron
2008, 64, 1420–1429.
out purification. Flash column chromatography was performed on
1
silica (200–300 mesh). H and 13C NMR spectra were recorded at
400 and 100 MHz, respectively with a Bruker Avance 400 MHz
NMR spectromer, and were referenced to the internal solvent sig-
nals. Thin layer chromatography was performed by using silica gel
F254 TLC plates and visualized with ultraviolet light. HPLC was
carried out with a Waters 2695 Millennium system equipped with
a photodiode array detector. EI and CI mass spectra were per-
formed with a Trace DSQ GC/MS spectrometer. Data are reported
in the form of m/z values. The organocatalysts were commercially
available and used directly. The Biginelli reaction products were
known and confirmed by GC–MS and usual spectral methods (1H,
13C NMR). The ESI-MS analysis of the samples was carried out
with an LCQ advantage mass spectrometer (ThermoFisher Com-
pany, USA), equipped with an ESI ion source in the positive ion-
ization mode, with data acquisition using the Xcalibur software
(version 1.4). Organocatalysts were synthesized according to re-
ported procedures.[16]
[7]
[8]
[9]
[10]
[11]
Y. Huang, F. Yang, C. Zhu, J. Am. Chem. Soc. 2005, 127,
General Procedure for the Biginelli Reaction: A catalytic amount of
QN-NH2 (10 mol-%) and NbCl5 (10 mol-%) were added to a vial
containing aldehyde (1 mmol), urea (1.2 mmol), and ethyl aceto-
acetate (5 mmol) in 1,4-dioxane (2 mL). After vigorous stirring at
room temperature for the times shown in the tables or schemes, the
reaction mixture was poured into an extraction funnel containing
brine, diluted with distilled water, and EtOAc. The aqueous phase
was extracted with EtOAc. The combined organic phases were
dried with Na2SO4, and the solvent was removed under reduced
pressure. The crude product was purified by silica gel column
chromatography to furnish the desired known DHPMs, which were
confirmed by GC–MS and NMR analysis; the ees of the DHPMs
were determined by chiral-phase HPLC analysis using a chiral col-
umn and the indicated eluent systems (see Supporting Infor-
mation).
16386–16387.
a) X. H. Chen, X. Y. Xu, H. Liu, L. F. Cun, L. Z. Gong, J.
Am. Chem. Soc. 2006, 128, 14802–14803; b) L. Z. Gong, X. H.
Chen, X. Y. Xu, Chem. Eur. J. 2007, 13, 8920–8926; c) N. Li,
X. H. Chen, J. Song, S. W. Luo, W. Fan, L. Z. Gong, J. Am.
Chem. Soc. 2009, 131, 15301–15310.
a) R. González-Olvera, P. Demare, I. Regla, E. Juaristi, ARKI-
VOC 2008, vi, 61–76; b) J. Xin, L. Chang, Z. Hou, D. Shang,
X. Liu, X. Feng, Chem. Eur. J. 2008, 14, 3177–3181; c) Y.
Wang, H. Yang, J. Yu, Z. Miao, R. Chen, Adv. Synth. Catal.
2009, 351, 3057–3062; d) J. H. Sohn, H. M. Choi, S. Lee, S.
Joung, H. Y. Lee, Eur. J. Org. Chem. 2009, 3858–3862; e) Y. Y.
Wu, Z. Chai, X. Y. Liu, G. Zhao, S. W. Zhao, Eur. J. Org.
Chem. 2009, 904–911.
a) G. Chen, Y. Deng, L. Gong, A. Mi, X. Cui, Y. Jiang,
M. C. K. Choi, A. S. C. Chan, Tetrahedron: Asymmetry 2001,
12, 1567–1571; b) M. Nakoji, T. Kanayama, T. Okino, Y. Take-
moto, Org. Lett. 2001, 3, 3329–3331; c) S. France, H. Wack,
A. M. Hafez, A. E. Taggi, D. R. Witsil, T. Lectka, Org. Lett.
2002, 4, 1603–1605; d) S. France, M. H. Shah, A. Weatherwax,
H. Wack, J. P. Roth, T. Lectka, J. Am. Chem. Soc. 2005, 127,
1206–1215; e) L. Yang, L. W. Xu, C. G. Xia, Tetrahedron Lett.
2007, 48, 1599–1603; f) D. H. Paull, C. J. Abraham, M. T.
Scerba, E. Alden-Danforth, T. Lectka, Acc. Chem. Res. 2008,
41, 655–663; g) Z. Shao, H. Zhang, Chem. Soc. Rev. 2009, 38,
2745–2755; h) Z. Xu, P. Daka, H. Wang, Chem. Commun.
2009, 6825–6827; i) C. Zhong, X. Shi, Eur. J. Org. Chem. 2010,
2999–3025; j) H. M. Yang, Y. H. Gao, L. Li, Z. Y. Jiang, G. Q.
Lai, C. G. Xia, L. W. Xu, Tetrahedron Lett. 2010, 51, 3836–
3839; k) P. Daka, Z. Xu, A. Alexa, H. Wang, Chem. Commun.,
DOI:10.1039/c0cc00917b.
[12]
[13]
Supporting Information (see footnote on the first page of this arti-
cle): General remarks, spectral data and HPLC diagrams for the
Biginelli adducts.
Acknowledgments
This project was supported by the National Natural Science Foun-
dation of China (grant no. 20973051) and the Zhejiang Provincial
Natural Science Foundation of China (Y4090139).
[1] P. Biginelli, Gazz. Chim. Ital. 1893, 23, 360–416.
Eur. J. Org. Chem. 2010, 4986–4990
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4989