ACS Medicinal Chemistry Letters
Letter
atitis B Virus and Human Immunodeficiency Virus Type 1 in Vitro.
Biochem. Pharmacol. 1994, 47, 171−174.
(11) Ray, A. S.; Yang, Z.; Chu, C. K.; Anderson, K. S. Novel Use of a
Guanosine Prodrug Approach to Convert 2′,3′-Didehydro-2′,3′-
dideoxyguanosine into a Viable Antiviral Agent. Antimicrob. Agents
Chemother. 2002, 46, 887−891.
(12) Morelock, M. M.; Choi, L. L.; Bell, G. L.; Wright, J. L.
Estimation and Correlation of Drug Water Solubility with Pharmaco-
logical Parameters Required for Biological Activity. J. Pharm. Sci. 1994,
83, 948−952.
(13) Weuts, I.; Van Dycke, F.; Voorspoels, J.; de Cort, S.;
Stokbroekx, S.; Leemans, R.; Brewster, M. E.; Xu, D.; Segmuller, B.;
Turner, Y. T. A.; Roberts, C. J.; Davies, M. C.; Qi, S.; Craig, D. Q. M.;
Reading, M. Physicochemical Properties of the Amorphous Drug, Cast
Films, and Spray Dried Powders to Predict Formulation Probability of
Success for Solid Dispersions: Etravirine. J. Pharm. Sci. 2011, 100,
260−274.
(14) Janssen, P. A. J.; Lewi, P. J.; Arnold, E.; Daeyaert, F.; de Jonge,
M.; Heeres, J.; Koymans, L.; Vinkers, M.; Guillemont, J.; Pasquier, E.;
Kukla, M.; Ludovici, D.; Andries, K.; de Bethune, M.-P.; Pauwels, R.;
́
been deposited in the RCSB Protein Data Bank with the PDB
code 4WE1. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Gratitude is expressed to the National Institutes of Health
(AI44616, GM32136, GM49551) for research support and for
a fellowship to KMF (AI104334). We also thank the National
Synchrotron Light Source at Brookhaven National Laboratory
for beam time and assistance on X29A.
Das, K.; Clark, A. D., Jr.; Frenkel, Y. V.; Hughes, S. H.; Medaer, B.; De
Knaep, F.; Bohets, H.; De Clerck, F.; Lampo, A.; Williams, P.; Stoffels,
P. In Search of a Novel Anti-HIV Drug: Multidisciplinary
Coordination in the Discovery of 4-[[4-[[4-[(1E)-2-Cyanoethenyl]-
2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
(R278474, Rilpivirine). J. Med. Chem. 2005, 48, 1901−1919.
(15) Sun, L.-Q.; Qin, B.; Huang, L.; Qian, K.; Chen, C.-H.; Lee, K.-
H.; Xie, L. Optimization of 2,4-Diarylanilines As Non-Nucleoside
HIV-1 Reverse Transcriptase Inhibitors. Bioorg. Med. Chem. Lett. 2012,
22, 2376−2379.
ABBREVIATIONS
■
HIV, human immunodeficiency virus; HIV-RT, HIV reverse
transcriptase; NNRTI, non-nucleoside inhibitor of HIV-RT; Bz,
benzoyl; DCM, dichloromethane; DMF, dimethylformamide;
HPLC, high-performance liquid chromatography
REFERENCES
■
(1) De Clercq, E. The Nucleoside Reverse Transcriptase Inhibitors,
Nonnucleoside Reverse Transcriptase Inhibitors, and Protease
Inhibitors in the Treatment of HIV Infections (AIDS). Adv. Pharmacol.
2013, 67, 317−358.
(2) Reynolds, C.; de Koning, C. B.; Pelly, S. C.; van Otterlo, W. A. L.;
Bode, M. L. In Search of a Treatment for HIV: Current Therapies and
the Role of Non-Nucleoside Reverse Transcriptase Inhibitors
(NNRTIs). Chem. Soc. Rev. 2012, 41, 4657−4670.
(16) Jorgensen, W. L.; Duffy, E. M. Prediction of Drug Solubility
from Structure. Adv. Drug Delivery Rev. 2002, 54, 355−366.
(17) Bollini, M.; Cisneros, J. A.; Spasov, K. A.; Anderson, K. S.;
Jorgensen, W. L. Optimization of Diarylazines As Anti-HIV Agents
with Dramatically Enhanced Solubility. Bioorg. Med. Chem. Lett. 2013,
23, 5213−5216.
(18) Jorgensen, W. L. Efficient Drug Lead Discovery and
Optimization. Acc. Chem. Res. 2009, 42, 724−733.
(3) Zhan, P.; Chen, X.; Li, D.; Fang, Z.; De Clercq, E.; Liu, X. HIV-1
NNRTIs: Structural Diversity, Pharmacophore Similarity, and
Implications for Drug Design. Med. Res. Rev. 2013, 33, E1−E72.
(4) Bollini, M.; Domaoal, R. A.; Thakur, V. V.; Gallardo-Macias, R.;
Spasov, K. A.; Anderson, K. S.; Jorgensen, W. L. Computationally-
Guided Optimization of a Docking Hit to Yield Catechol Diethers as
Potent Ani-HIV Agents. J. Med. Chem. 2011, 54, 8582−8591.
(5) Lee, W.-G.; Gallardo-Macias, R.; Frey, K. M.; Spasov, K. A.;
Bollini, M.; Anderson, K. S.; Jorgensen, W. L. Picomolar Inhibitors of
HIV Reverse Transcriptase Featuring Bicyclic Replacement of a
Cyanovinylphenyl Group. J. Am. Chem. Soc. 2013, 135, 16705−16713.
́
(6) de Bethune, M.-P. Non-nucleoside Reverse Transcriptase
Inhibitors (NNRTIs), Their Discovery, Development, and Use in
the Treatment of HIV-1 Infection: A Review of the Last 20 Years
(1989−2009). Antiviral Res. 2010, 85, 75−90.
(7) Frey, K. M.; Bollini, M.; Mislak, A. C.; Cisneros, J. A.; Gallardo-
Macias, R.; Jorgensen, W. L.; Anderson, K. S. Crystal Structures of
HIV-1 Reverse Transcriptase with Picomolar Inhibitors Reveal Key
Interactions for Drug Design. J. Am. Chem. Soc. 2012, 134, 19501−
19503.
(8) Frey, K. M.; Gray, W. T.; Spasov, K. A.; Bollini, M.; Gallardo-
Macias, R.; Jorgensen, W. L.; Anderson, K. S. Structure-Based
Evaluation of C5 Derivatives in the Catechol Diether Series Targeting
HIV-I Reverse Transcriptase. Chem. Biol. Drug Des. 2014, 83, 541−
549.
́ ́
(9) Baka, E.; Comer, J. E. A; Takacs-Novak, K. Study of Equilibrium
Solubility Measurement by Saturation Shake-Flask Method Using
Hydrochlorothiaide as Model Compound. J. Pharm. Biomed. Anal.
2008, 46, 335−341.
(10) Lin, T. S.; Luo, M. Z.; Liu, M. C.; Pai, S. B.; Dutschman, G. E.;
Cheng, Y. C. Antiviral Activity of 2′,3′-Dideoxy-β-L-5-fluorocytidine
(β-L-EddC) and 2′,3′-Dideoxy-β-L-cytidine (β-L-ddC) against Hep-
D
dx.doi.org/10.1021/ml5003713 | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX