M.K. Saroj et al. / Journal of Molecular Structure 1012 (2012) 73–86
85
[5] S.B. Nielsen, S.F. Christensen, G. Cruciani, A. Kharazmi, J. Med. Chem. 41 (24)
(1998) 4819–4832.
[6] S.K. Kumar, E. Hager, C. Pettit, H. Gurulingappa, N.E. Davidson, S.R. Khan, J.
Med. Chem. 46 (14) (2003) 2813–2815.
values are positive and quite significant for all the systems studied
here. When l(ICT) are compared with
l(ICT) and lꢂ l(LE) and lꢂ
(LE) values, it is clearly seen that the dipole moments for ICT states
D
/
D
/
l
[7] Y.M. Lin, Y. Zhou, M.T. Flavin, L.M. Zhou, W. Nie, F.C. Chen, Bioorg. Med. Chem.
10 (8) (2002) 2795–2802.
[8] Y.R. Prasad, L. Prasoona, A.L. Rao, K. Lakshmi, P.R. Kumar, B.G. Rao, Int. J. Chem.
Sci. 3 (4) (2005) 685–689.
[9] D. Batovska, S. Parushev, B. Stamboliyska, I. Tsvetkova, M. Ninova, H.
Najdenski, Eur. J. Med. Chem. 44 (5) (2009) 2211–2218.
[10] K.C. Joshi, R. Jain, K. Sharma, Heterocycles 31 (3) (1990) 473–477.
[11] K.C. Joshi, R. Jain, S. Garg, Pharmazie 40 (1) (1985) 21–22.
[12] A.R.S. Babu, R. Raghunathan, Tetrahedron Lett. 47 (52) (2006) 9221–9225.
[13] A. Dandia, M. Sati, K. Arya, R. Sharma, A. Loupy, Chem. Pharm. Bull. 51 (10)
(2003) 1137–1141.
[14] A. Dandia, M. Upreti, B. Rani, U.C. Pant, J. Chem. Res. (Synop.) 12 (1998) 752–
753. 3348–3355.
[15] F.Z. Macaev, O.M. Radul, I.N. Shterbet, S.I. Pogrebnol, N.S. Sueman, S.T.
Malinovskii, A.N. Barba, M. Gdaniec, Chem. Heterocycl. Compd. 43 (3) (2007)
298–305.
[16] A.R.S. Babu, R. Raghunathan, Tetrahedron Lett. 48 (38) (2007) 6809–6813.
[17] A.B. Serov, V.G. Kartsev, Y.A. Aleksandrov, F.M. Dolgushinc, Russ. Chem. Bull.
54 (10) (2005) 2432–2436.
[18] Y. Marcus, The Properties of Solvents, John Wiley & Sons, New York, 1998.
[19] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Plenum Press,
New York, 2006.
are larger than those of LE states for all BMI derivatives, indicating
stronger electronic interaction for the former structures (ICT state,
resonance structure II in Fig. 5). These results are in agreement
with the fact that the band F1 arises from LE state with the similar
electronic arrangement as in ground state and band F2 shows the
presence of possible dipolar resonance forms termed as ICT state
in all BMI derivatives.
The increase in the dipole moment upon excitation for BMI
derivatives can be reasonably explained on the basis of resonance
structures as shown in Fig. 5, and the nature of emitting states. All
BMI derivatives studied here promote the resonance structure of
type II in the excited state as ICT, explaining the substantial charge
separation upon excitation.
The trend observed in the change in dipole moments of BMI
derivatives reflects the nature of the substituents and is in accor-
dance with the ionization potential (IP) trend of the substituted
benzene ring for both LE and ICT states [68]. This indicates that
both states are affected by solvent polarity in the same manner.
[20] S. Kumar, V.C. Rao, R.C. Rastogi, Spectrochim. Acta A 57 (2001) 41–47.
[21] S. Kumar, S.K. Jain, R.C. Rastogi, Spectrochim. Acta A 57 (2001) 291–298.
[22] V.K. Sharma, P.D. Sahare, R.C. Rastogi, Spectrochim. Acta A 59 (2003) 1799–
1804.
[23] V.K. Sharma, P.D. Saharo, N. Sharma, R.C. Rastogi, S.K. Ghoshal, D. Mohan,
Spectrochim. Acta A 59 (2003) 1161–1170.
BMI shows the lowest
D
l(ICT) and lꢂ
l(ICT) values of OMeBMI and DiOMe-
/l(ICT) values in comparison
to the highest
D
l(ICT) and lꢂ
/
BMI derivatives.
[24] N. Sharma, S.K. Jain, R.C. Rastogi, Bull. Chem. Soc. Jpn. 76 (9) (2003) 1741–
1746.
[25] N. Sharma, S.K. Jain, R.C. Rastogi, Spectrochim. Acta A 66 (2007) 171–176.
[26] M.K. Saroj, N. Sharma, R.C. Rastogi, J. Fluoresc. 21 (6) (2011) 2213–2227.
[27] M. Gaber, S.A. El-Daly, T.A. Fayed, Y.S. El-Sayed, Opt. Laser Technol. 40 (3)
(2008) 528–537.
[28] S. Chatterjee, S. Kar, S. Lahiri, S. Basu, Spectrochim. Acta A 60 (8–9) (2004)
1713–1718.
[29] H. Wenying, L. Ying, L. Jiaqin, H. Zhide, C. Xingguo, Biopolymers 79 (2005) 48–
57.
[30] M.A. Paul, F.A. Long, Chem. Rev. 57 (1957) 1–45.
[31] F.D. Popp, B.E. Donigan, J. Pharm. Sci. 68 (4) (1979) 519–520.
[32] K.C. Joshi, A. Dandia, S. Khanna, Ind. J. Chem. 29B (10) (1990) 933–936.
[33] L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621–627.
[34] L. Bilot, A. Kawski, Z. Naturforsch. 18a (1963) 10–15.
[35] L. Bilot, A. Kawski, Z. Naturforsch. 18a (1963) 256.
[36] A. Kawski, Acta Phys. Polon. 25 (2) (1964) 285–290.
[37] A. Kawski, Acta Phys. Polon. 28 (5) (1965) 647–652.
[38] A. Kawski, U. Stefanowska, Acta Phys. Polon. 28 (6) (1965) 809–822.
[39] A. Kawski, in: J.F. Rabek (Ed.), Progress in Photochemistry and Photophysics,
vol. V, CRC Press, Boca Raton, Boston, 1992, pp. 1–47.
[40] A. Kawski, Z. Naturforsch. 57a (5) (2002) 255–262.
[41] Y. Ooshika, J. Phys. Soc. Jpn. 9 (4) (1954) 594–602.
[42] E.G. McRae, J. Phys. Chem. 61 (1957) 562–572.
[43] E. Lippert, Z. Elektrochem. Angew. Phys. Chem. 61 (1957) 962–975.
[44] N.G. Bakhshiev, Opt. Spectrosc. 10 (1961) 717–726.
[45] N.G. Bakhshiev, Opt. Spectrosc. 16 (5) (1964) 821–832.
[46] W. Liptay, Z. Naturforsch. 20a (11) (1965) 1441–1471.
[47] M. Ravi, A. Samanta, T.P. Radhakrishnan, J. Phys. Chem. 98 (37) (1994) 9133–
9136.
4. Conclusions
The study of excited state dipole moments of benzoylmethylen-
eindol-2-one systems has brought into focus the presence of three
emitting states (LE, ICT and ESIPT) in these molecules. These emit-
ting states are affected by the change in solvent polarity as well as
the substituted-phenyl moieties.
The experimentally calculated Dl /l values of probes re-
and lꢂ
veal an increase in the excited state dipole moment. Moreover,
experimentally calculated values are significantly larger than the
semiempirical computational (PM3) estimates justifying the ICT
as the main character of the excited state.
Prototropic reaction has found the existence of three species
monocation, neutral and monoanion in BMI derivatives. Therefore,
two equilibria exist in these derivatives, Monocation M Neutral
and Neutral M Monoanion in the range Ho/pH of ꢁ5 to 14 in
ground state as well as excited state (LE and ICT). Anion and cation
are formed due to the deprotonation from NH group and proton-
ation on carbonyl group, respectively.
The valuable information so obtained about the nature of the
emitting state opens the possibility of examination of various the-
oretical models for the electronic structure of the excited states.
These solvatochromic studies provide insights for further applica-
tions of benzoylmethyleneindol-2-one derivatives as environ-
ment-sensitive probes.
[48] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH,
Weinheim, Germany, 1988. pp. 113–114, 389–452.
[49] R.M. Hermant, N.A.C. Bakker, T. Scherer, B. Krijnen, J.W. Verhoeven, J. Am.
Chem. Soc. 112 (3) (1990) 1214–1221.
[50] HyperChem Release 5.1, Hypercube, Inc., USA, 1997.
[51] G. Quartarone, T. Bellomi, A. Zingales, Corros. Sci. 45 (4) (2003) 715–733.
[52] V. Tomeckova, J. Guzy, J. Kusnir, K. Fodor, M. Marekova, Z. Chavkova, P. Perjesi,
J. Biochem. Biophys. Methods 69 (1–2) (2006) 143–150.
[53] I.A.Z. Al-Ansari, J. Phys. Org. Chem. 10 (9) (1997) 687–696.
[54] T. Yoshihara, V.A. Galievsky, S.I. Druzhinin, S. Saha, K.A. Zachariasse,
Photochem. Photobiol. Sci. 2 (3) (2003) 342–353.
[55] E.G. Cox, T.H. Goodwin, A.I. Wagstaff, Proc. Roy. Soc. Lond. A. Math. Phys. Sci.
157 (891) (1936) 399–411.
[56] W.C. Sumpter, Chem. Rev. 34 (3) (1944) 393–434.
[57] W.C. Sumpter, J.L. Williams, P.H. Wilken, B.L. Willoughbyz, J. Org. Chem. 14 (5)
(1949) 713–722.
[58] W.C. Sumpter, P.H. Wilken, J.L. Williams, R. Wedemeyer, F.L. Boyer, W.W. Hunt,
J. Org. Chem. 16 (11) (1951) 1777–1784.
[59] A. Samanta, B.K. Paul, S. Kar, N. Guchhait, J. Fluoresc. 21 (1) (2011) 95–104.
[60] F. Milletti, L. Storchi, G. Sforna, S. Cross, G. Cruciani, J. Chem. Inf. Model. 49 (1)
(2009) 68–75.
[61] D.A. Parthenopoulos, M. Kasha, Chem. Phys. Lett. 173 (4) (1990) 303–309.
[62] K. Rotkiewicz, K.H. Grellmann, Z.R. Grabowski, Chem. Phys. Lett. 19 (3) (1973)
315–318.
Acknowledgements
The financial support from University of Delhi under the
Scheme ‘‘To strengthen R&D Doctoral Research Program’’ is grate-
fully acknowledged. Manju K. Saroj is thankful to the University
Grants Commission (UGC), New Delhi for the financial assistance.
References
[1] S.A. Indyah, H. Timmerman, M. Samhoedi, Sastrohami, Sugiyanto, H.V.D. Goot,
Eur. J. Med. Chem. 35 (4) (2000) 449–457.
[2] S. Mukherjee, V. Kumar, A.K. Prasad, H.G. Raj, M.E. Brakhe, C.E. Olsen, S.C. Jain,
V.S. Parmar, Bioorg. Med. Chem. 9 (2) (2001) 337–345.
[3] M. Chen, S.B. Christensen, L. Zhai, M.H. Rasmussen, T.G. Theander, S. Frokjaer,
B. Steffensen, J. Davidson, A. Kharazmi, J. Infect. Dis. 176 (5) (1997) 1327–1333.
[4] S.S. Lim, H.S. Kim, D.U. Lee, Bull. Korean Chem. Soc. 28 (12) (2007) 2495–2497.