K.-S. Youk et al. / Tetrahedron Letters 49 (2008) 3652–3655
2006, 1, 246–252; (l) Lee, K. Y.; Kim, D. W.; Heo, J.; Kim, J. S.; 7. Baldwin, J. E.; Krebs, H. Nature 1981, 291, 381–382.
3655
´
´
´
´
Yang, J.-K.; Cheong, G.-W.; Han, S. W. Bull. Korean Chem. Soc.
2006, 27, 2081–2083; (m) Ipe, B. I.; Yoosaf, K.; Thomas, K. G. J. Am.
Chem. Soc. 2006, 128, 1907–1913; (n) Lin, S.-Y.; Chen, C.-h.; Lin, M.-
C.; Hsu, H.-F. Anal. Chem. 2005, 77, 4821–4828; (o) Kim, J. H.;
Estabrook, R. A.; Braun, G.; Lee, B. R.; Reich, N. O. Chem.
Commun. 2007, 4342–4344; (p) Lee, J.-S.; Han, M. S.; Mirkin, C. A.
Angew. Chem., Int. Ed. 2007, 46, 4093–4096; (q) Minami, K.; Kaneko,
K.; Nagasaki, T.; Kubo, Y. Tetrahedron Lett. 2008, 49, 432–436.
2. Mulvaney, P. Langmuir 1996, 12, 788–800.
8. (a) Sancenon, F.; Martınez-Manez , R.; Miranda, M. A.; Seguı , M.-
˜
J.; Soto, J. Angew. Chem., Int. Ed. 2003, 42, 647–650; (b) Tseng, Y.-P.;
Tu, G.-M.; Lin, C.-H.; Chang, C. T.; Lin, C.-Y.; Yen, Y.-P. Org.
Biomol. Chem. 2007, 5, 3592–3598.
9. (a) Henglein, A. Langmuir 1999, 15, 6738–6744; (b) Jaiswal, J.;
Gupta, S. K.; Kreuter, J. J. Controlled Release 2004, 96, 169–
178.
10. Selected data for 1: Yellow liquid; 1H NMR (300 MHz, CDCl3): d
10.9 (s, 1H), 8.86 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.45 (t,
J = 7.4 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 3.61 (d, J = 6.39 Hz, 1H),
3.23 (m, 2H), 2.52 (m, 3H), 1.97 (m, 1H), 1.86 (m, 4H), 1.60 (m, 2H);
3. Supramolecular Chemistry of Anions; Bianchi, E., Bowman-James, K.,
´
Garcıa-Espana , E., Eds.; Wiley-VCH: New York, 1997.
˜
´
´
´
4. (a) Martınez-Manez , R.; Sancenon, F. Chem. Rev. 2003, 103, 4419–
13C NMR (75 MHz, CDCl3):
d 184.4, 184.0, 183.5, 183.0 (q,
˜
4476; (b) Aranzaes, J. R.; Belin, C.; Astruc, D. Chem. Commun. 2007,
3456–3458; (c) Keaveney, C. M.; Leigh, D. A. Angew. Chem., Int. Ed.
2004, 43, 1222–1224; (d) Daniel, M.-C.; Aranzaes, J. R.; Nlate, S.;
Astruc, D. J. Inorg. Organomet. Polym. Mater. 2005, 15, 107–119; (e)
Watanabe, S.; Nakamura, T.; Tazume, Y.; Seguchi, H.; Yoshida, K.
Trans. Mater. Res. Soc. Jpn. 2004, 29, 869–871; (f) Astruc, D.; Daniel,
M.-C.; Ruiz, J. Chem. Commun. 2004, 2637–2649; (g) Beer, P. D.;
Cormode, D. P.; Davis, J. J. Chem. Commun. 2004, 414–415; (h)
Watanabe, S.; Sonobe, M.; Arai, M.; Tazume, Y.; Matsuo, T.;
Nakamura, T.; Yoshida, K. Chem. Commun. 2002, 2866–2867; (i)
Gale, P. A. Coord. Chem. Rev. 2003, 240, 1; (j) Beer, P. D.; Gale, V.
Angew. Chem., Int. Ed. 2001, 40, 486–516; (k) Beer, P. D.; Gale, P. A.;
Chen, G. Z. J. Chem. Soc., Dalton Trans. 1999, 1897–1910; (l) Valerio,
C.; Fillaut, J. L.; Ruiz, J.; Guittard, J.; Blais, J. C.; Astruc, D. J. Am.
Chem. Soc. 1997, 119, 2588–2589; (m) Fitzmaurice, R. J.; Kyne, G.
M.; Douheret, D.; Kilburn, J. D. J. Chem. Soc., Perkin Trans. 1 2002,
841–864. and references cited therein; (n) Costero, A. M.; Colera, M.;
Gavina, P.; Gil, S. Chem. Commun. 2006, 761–763; (o) Costero, A.
M.; Gavina, P.; Rodriguez-Muniz, G. M.; Gil, S. . S. Tetrahedron
2006, 62, 8571–8577; (p) Costero, A. M.; Gavina, P.; Rodriguez-
Muniz, G. M.; Gil, S. . S. Tetrahedron 2007, 63, 7899–7905.
J = 34.2 Hz), 172.8, 144.2, 138.4, 132.59, 132.54, 132.48, 132.42 (q,
J = 4.1 Hz ), 123.0, 119.1, 115.2, 111.4 (q, J = 289.5 Hz), 123.3, 121.9,
115.8, 56.9, 40.9, 39.17, 39.07 (d, 7.1 Hz), 35.3, 29.4, 25.7; 19F
(282 MHz, CDCl3): d 7.04; HRMS (FAB): calcd for C16H19O2NF3S2
(M+H) 378.0810, found; 378.0805.
11. To a light-yellow solution of HAuCl4Á3H2O (57 mg, 0.144 mmol) in
deionized water (100 mL, purified by using
a
Milli-QTM water
purification system) under reflux was added quickly a solution of
sodium citrate dihydrate (130 mg, 0.44 mmol) in deionized water
(5 mL). The resulting solution became deep red within minutes,
which was stirred for 30 min under reflux and then it was allowed to
cool to room temperature. The reaction mixture was filtered through
a cellulose nitrate membrane filter (pore size: 0.2 lm) to give a gold
colloidal solution, which was diluted with deionized water (135 mL)
and used for the next PVA-stabilization and TFACA-functionaliza-
tion steps. To the diluted gold colloidal solution (20 mL) was added
40–80 lL of an aqueous solution of PVA (3.6 mg dissolved in 1.0 mL
water; MW 9000–10,000) at room temperature. To this stabilized
gold colloidal solution was added 80-lL of an acetonitrile solution of
TFACA 2 (29 mg dissolved in 38 mL of acetonitrile) and the resulting
mixture was stirred at room temperature for 12 h, which was used for
the sensing experiments. Based on the literature data (Refs. 5c and
5d), the concentration of AuNPs in the colloidal solution is calculated
to be ꢀ3 nM. Omitting the PVA-stabilization step in the above
resulted in an unstable gold colloidal solution, which turned blue
during the TFACA-functionalization.
5. (a) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature
1996, 382, 607–609; (b) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.;
Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078–1080; (c)
Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger,
R. L. J. Am. Chem. Soc. 1998, 120, 1959–1964; (d) Demers, L. M.;
Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A., III; Letsinger, R. L.;
Elghanian, R.; Viswanadham, G. Anal. Chem. 2000, 72, 5535–5541;
(e) Taton, T. A.; Lu, G.; Mirkin, C. A. J. Am. Chem. Soc. 2001, 123,
5164–5165; (f) Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K.
J. Am. Chem. Soc. 2001, 123, 8226–8230; (g) Hazarika, P.; Kukolka,
F.; Niemeyer, C. M. Angew. Chem., Int. Ed. 2006, 45, 6827–6830.
6. (a) Kim, Y. K.; Lee, Y.-H.; Lee, H.-Y.; Kim, M.-K.; Cha, G. S.; Ahn,
K. H. Org. Lett. 2003, 5, 4003–4006; (b) Chung, Y. M.; Raman, B.;
Kim, D.-S.; Ahn, K. H. Chem. Commun. 2006, 186–188; (c) Kim, D.-
S.; Miyaji, H.; Chang, B.-Y.; Park, S.-M.; Ahn, K. H. Chem.
Commun. 2006, 3314–3316; (d) Miyaji, H.; Kim, D.-S.; Chang, B.-Y.;
Park, E.; Park, S.-M.; Ahn, K. H. Chem. Commun. 2008, 753–755; (e)
Ryu, D.; Park, E.; Kim, D.-S.; Yan, S.; Lee, J. Y.; Chang, B.-Y.; Ahn,
K. H. J. Am. Chem. Soc. 2008, 130, 2394–2395.
12. As the titration proceeds, the pH of the solution became a little basic
(pH 7.8 when 20 lL of 0.10 M aqueous fumarate solution was added
to 2.0 mL of the AuNP solution) because of added dicarboxylate
anions; however, this direct sensing scheme is preferred over that of
using a buffer solution. At lower pH such as pH 6, there was no color
change for the given time because some of the dicarboxylate dianions
become monocarboxylate, which is unable to cross-link the nanopar-
ticles. In the case of a more basic solution such as at pH 8 (HEPES
buffer), the color change took a longer time because the binding motif
becomes more hydrated as the solution becomes basic (The TFACA
binding motif is under equilibrium with its hydrated form in aqueous
media). When necessary, it is recommended to use a buffer solution of
neutral pH or slightly basic one (pH 6 8).