C O M M U N I C A T I O N S
(4) For reviews of catalytic dendrimers, see: (a) Helms, B.; Frechet, J. M. J.
AdV. Synth. Catal. 2006, 348, 1125–1148. (b) Kofoed, J.; Reymond, J.-L.
Curr. Opin. Chem. Biol. 2005, 9, 656–664. (c) Kassube, J. K.; Gade, L. H.
Top. Organomet. Chem. 2006, 20, 61. (d) Oosterom, G. E.; Reek, J. N. H.;
Kamer, P. C. J.; Van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2001,
40, 1828–1849. (e) Twyman, L. J.; King, A. S. H.; Martin, I. K. Chem.
Soc. ReV. 2002, 31, 69–82.
(5) Enhancement of reactivity: (a) Hattori, H.; Fujita, K.-i.; Muraki, T.; Sakaba,
A. Tetrahedron Lett. 2007, 48, 6817–6820. (b) Javor, S.; Delort, E.; Darbre,
T.; Reymond, J.-L. J. Am. Chem. Soc. 2007, 129, 13238–13246. (c) Wang,
Z.-J.; Deng, G.-J.; Li, Y.; He, Y.-M.; Tang, W.-J.; Fan, Q.-H. Org. Lett.
2007, 9, 1243–1246. (d) Helms, B.; Liang, C. O.; Hawker, C. J.; Frechet,
J. M. J. Macromolecules 2005, 38, 5411–5415. (e) Liu, L.; Breslow, R.
J. Am. Chem. Soc. 2003, 125, 12110–12111. (f) Liang, C. O.; Helms, B.;
Hawker, C. J.; Frechet, J. M. J. Chem. Commun. 2003, 2524–2525. (g)
Piotti, M. E.; Rivera, F., Jr.; Bond, R.; Hawker, C. J.; Frechet, J. M. J.
J. Am. Chem. Soc. 1999, 121, 9471–9472.
(6) Liang, C.; Frechet, J. M. J. Prog. Polym. Sci. 2005, 30, 385–402.
(7) The structural consequence of such long-range chirality transfer on
stereoselectivity has been recently documented. See, for example: (a)
Clayden, J.; Vassiliou, N. Org. Biomol. Chem. 2006, 4, 2667–2678. (b)
Clayden, J.; Lund, A.; Vallverdu, L.; Helliwell, M. Nature 2004, 431, 966–
971.
(8) (a) Recker, J.; Tomcik, D. J.; Parquette, J. R. J. Am. Chem. Soc. 2000,
122, 10298–10307. (b) Parquette, J. R. C.R. Chim. 2003, 6, 779–789. (c)
Lockman, J. W.; Paul, N. M.; Parquette, J. R. Prog. Polym. Sci. 2005, 30,
423–452. (d) Huang, B.; Parquette, J. R. J. Am. Chem. Soc. 2001, 123,
2689–2690. (e) Hofacker, A. L.; Parquette, J. R. Angew. Chem., Int. Ed.
2005, 44, 1053–1057.
(9) Desponds, O.; Schlosser, M. Tetrahedron Lett. 1996, 37, 47–48.
(10) For an example of a nine-membered Pd complex derived from a binaphthol
bis-diarylphosphinite, see: (a) Clyne, D. S.; Mermet-Bouvier, Y. C.;
Nomura, N.; RajanBabu, T. V. J. Org. Chem. 1999, 64, 7601–7611.
Conformations of seven-membered Rh chelates: (b) Kadyrov, R.; Boerner,
A.; Selke, R. Eur. J. Inorg. Chem. 1999, 705–711.
(11) 1,2-Bis-diarylphosphinites as ligands for Rh-catalyzed asymmetric
hydrogenation: (a) RajanBabu, T. V.; Radetich, B.; You, K. K.; Ayers,
T. A.; Casalnuovo, A. L.; Calabrese, J. C. J. Org. Chem. 1999, 64, 3429–
3447. (b) RajanBabu, T. V.; Ayers, T. A.; Halliday, G. A.; You, K. K.;
Calabrese, J. C. J. Org. Chem. 1997, 62, 6012–6028. (c) Selke, R. React.
Kinet. Catal. Lett. 1979, 10, 135–138.
(12) (a) Guo, R.; Wu, A.-Y. J.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron:
Asymmetry 2002, 13, 2519–2522. (b) For the synthesis of binaphthol-derived
bis-arylphosphinites, see ref 10a.
(13) (a) Preston, A. J.; Gallucci, J. C.; Parquette, J. R. Org. Lett. 2006, 8, 5885–
5888. (b) Preston, A. J.; Gallucci, J. C.; Parquette, J. R. Org. Lett. 2006,
8, 5259–5262. (c) Preston, A. J.; Fraenkel, G.; Chow, A.; Gallucci, J. C.;
Parquette, J. R. J. Org. Chem. 2003, 68, 22–26.
proportion going from C3 to C4, and was not present in atropiso-
meric (R)-C5. The doublet for C2 appeared as a broadened doublet
at ambient temperature that partially resolved into two sets of
doublets at 45 °C. The enantioselectivity of 2 inversely correlates
with the proportion of the minor doublet. Consequently, these
additional peaks likely reflect the coexistence of a minor diaster-
eomeric complex arising from the axial stereoisomers of the
biphenyl core. The ratio of the diastereomers improves upon cooling
to -40 °C, providing further support for the dynamic nature of
these conformational isomers. It is also noteworthy that rhodium
coordination significantly improves the ratio of axial stereoiso-
mers.16 Equal proportions of the diastereomeric conformations are
indicated by the 31P NMR spectra of the uncomplexed forms of
C2-C4, each of which displays two peaks of equal intensity
(Supporting Information). This contrasts with the spectra of
uncomplexed ligand of (R)-C5, which exhibits a single 31P
resonance, as would be expected for a C2-symmetric atropisomeric
system.
In conclusion, we have demonstrated the first example of a
dendritic catalyst that directs the stereoselectivity of a catalytic
process by dynamically transferring the conformational chirality
of a dendritic structure to the catalytic center. Experimental evidence
supports a chiral relay mechanism that propagates the local terminal
chirality of the dendron to the axial chirality of the biphenyl core
via the helical secondary structure of the dendron. The exact details
of the kinetic origin of asymmetric induction remains under
investigation;17 however, the empirical relation between confor-
mational preferences of ground-state precatalysts and the sense of
asymmetric induction in Rh-catalyzed hydrogenation is well-
established.18 The results reported here illustrate the potential for
synthetic supramolecular systems to derive selective function from
dynamic structural properties.
Acknowledgment. This paper is dedicated to Professor David
J. Hart on the occasion of his 60th birthday and more than 30 years
of service to chemistry at The Ohio State University. This work
was supported by the National Science Foundation Collaborative
Research in Chemistry program (CRC-CHE-526864). We thank
Hui Shao for assistance in preparation of Figure 2.
(14) For a review, see: (a) Mikami, K.; Yamanaka, M. Chem. ReV. 2003, 103,
3369–3400. For various strategies to construct chiral, nonracemic catalysts
from atropos ligands, see: (b) Schmitkamp, M.; Chen, D.; Leitner, W.;
Klankermayer, J.; Francio, G. Chem. Commun. 2007, 4012–4014. (c)
Leitner, A.; Shekhar, S.; Pouy, M. J.; Hartwig, J. F. J. Am. Chem. Soc.
2005, 127, 15506–15514. (d) Alexakis, A.; Polet, D.; Rosset, S.; March,
S. J. Org. Chem. 2004, 69, 5660–5667. See also: Smith, C. S.; RajanBabu,
T. V. Org. Lett. 2008, 10, 1657–1659. (e) Bolm, C.; Beckmann, O. Chirality
2000, 12, 523–525. (f) Reetz, M. T.; Neugebauer, T. Angew. Chem., Int.
Ed. 1999, 38, 179–181. (g) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.;
Ikeda, I. Tetrahedron Lett. 1997, 38, 2681–2684. (h) Mizutani, T.; Takagi,
H.; Hara, O.; Horiguchi, T,; Ogoshi, H. Tetrahedron Lett. 1997, 38, 1991–
1994.
Supporting Information Available: Experimental procedures,
compound characterization, and 31P NMR spectra for C1-C5, and 1H
and 13C NMR spectra for synthetic intermediates. This material is
(15) Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. J. Am. Chem.
Soc. 2002, 124, 4952–4953.
(16) Although the oxazoline-terminated dendrons coordinate efficiently to Ni(II),
Cu(II), and Zn(II) metals (ref 13a), we did not observe any evidence in the
31P NMR spectra consistent with such coordination in the dendritic
phosphinites.
(17) Landis, C. R.; Halpern, J. J. Am. Chem. Soc. 1987, 109, 1746–1754.
(18) (a) Kagan, H. B. In ComprehensiVe Organometallic Chemistry; Wilkinson,
G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982;
Vol. 8; pp 463-498. (b) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106–
112. (c) Pavlov, V. A.; Klabunovskii, E. I.; Struchkov, Y. T.; Voloboev,
A. A.; Yanovsky, A. I. J. Mol. Catal. 1988, 44, 217–243.
References
(1) For a recent example of a supramolecularly assembled catalyst, see:
Laungani, A. C.; Breit, B. Chem. Commun. 2008, 844–846.
(2) For designed peptide catalysts, see: Colby Davie, E. A.; Mennen, S. M.;
Xu, Y.; Miller, S. J. Chem. ReV. 2007, 107, 5759–5812.
(3) (a) Brunner, H. J. Organomet. Chem. 1995, 500, 39–46. (b) Peerlings,
H. W.; Mejier, E. W. Chem.—Eur. J. 1997, 3, 1563–1573. (c) Seebach,
D.; Rheiner, G.; Greiveldinger, G.; Butz, T.; Sellner, H. Top. Curr. Chem.
1998, 197, 125–164. (d) Chow, H.-F.; Mak, C. C. J. Org. Chem. 1997, 62,
5116–5127.
JA802308A
9
J. AM. CHEM. SOC. VOL. 130, NO. 25, 2008 7847