reaction have only recently gained favor,13 where elegant
work in this area has elevated the status of the intramolecular
variant.15 Although the Michael accepting ability of vinyl
sulfones is well-documented,16 their vinyl sulfonamide
counterparts have assumed a far less prominent role as viable
Michael acceptors.10,17 We herein report the first examples
of intramolecular oxa-Michael and Baylis-Hillman reactions
of vinyl sulfonamides to afford an array of novel five-, six-,
seven-, and eight-membered ring sultam scaffolds in good
to excellent yields. The Baylis-Hillman reactions proceed
with good to excellent levels of diastereoselectivity, ulti-
mately yielding interesting sultam scaffolds. Overall, this
divergent route can be used to produce skeletally diverse
scaffolds from a single percursor in excellent yields.
Scheme 1. Synthesis of Seven- and Eight-Membered Ring
Sultams via Intramolecular Oxa-Michael Reactions
Figure 1. Biologically active sultams.
catalyzed processes that have recently been reported.10
Interest in the generation of new sultams for biological
screening has provided impetus for exploring the Michael-
accepting ability of vinyl sulfonamides. In particular, we
aimed to study the titled intramolecular oxa-Michael and
Baylis-Hillman approaches for the synthesis of chiral,
nonracemic sultams.
The oxa-Michael11 and Baylis-Hillman12,13 reactions have
emerged as simple yet powerful methods for C-O and C-C
bond formation. Both processes necessitate the presence of
a competent electron-deficient Michael accepting moiety. The
intermolecular oxa-Michael reaction has a long history dating
back to its original discovery in 1878, roughly 5 years before
the well-known Michael reaction was revealed.11 The in-
tramolecular version of the oxa-Michael reaction has seen a
renaissance and has been extensively utilized in natural
product synthesis for over 2 decades.14
The titled route began with the assembly of TBS-protected
amino alcohols, which represent cheap and versatile building
blocks for sultam scaffold synthesis. These TBS-protected
alcohols were reacted with 2-chloroethanesulfonyl chloride
to produce vinyl sulfonamides 2 in good yields (Scheme 1).
Subsequent benzylation/allylation reactions of vinyl sulfona-
(14) (a) See ref 11c and references therein. (b) Nicolaou, K. C.; Hwang,
C.-K.; Duggan, M. E. J. Am. Chem. Soc. 1989, 111, 6682–6690. (c) Evans,
D. A.; Gauchet-Prunet, J. A. J. Org. Chem. 1993, 58, 2446–2453. (d) Li,
M.; O’Doherty, G. A. Org. Lett. 2006, 8, 6087–6090. (e) Ahmed, M. M.;
Mortensen, M. S.; O’Doherty, G. A. J. Org. Chem. 2006, 71, 7741–7746.
(f) Chandrasekhar, S.; Rambabu, C.; Shyamsunder, T. Tetrahedron Lett.
2007, 48, 4683–4685.
In contrast, the Baylis-Hillman reaction was discovered
in 1972.12 Intramolecular versions of the Baylis-Hillman
(6) Inagaki, M.; Tsuri, T.; Jyoyama, H.; Ono, T.; Yamada, K.;
Kobayashi, M.; Hori, Y.; Arimura, A.; Yasui, K.; Ohno, K.; Kakudo, S.;
Koizumi, K.; Suzuki, R.; Kato, M.; Kawai, S.; Matsumoto, S. J. Med. Chem.
2000, 43, 2040–2048.
(15) (a) Roth, F.; Gygax, P.; Frater, G. Tetrahedron Lett. 1992, 33, 1045–
1048. (b) Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Krische,
M. J. J. Am. Chem. Soc. 2002, 124, 2402–2403. (c) Frank, S. A.; Mergott,
D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404–2405. (d) Keck,
G. E.; Welch, D. S. Org. Lett. 2002, 4, 3687–3690. (e) Huddleston, R. R.;
Krische, M. J. Synlett. 2003, 12–21. (f) Reddy, L. R.; Saravanan, P.; Corey,
E. J. J. Am. Chem. Soc. 2004, 126, 6230–6231. (g) Yeo, J. E.; Yang, X.;
Kim, H. J.; Koo, S. Chem. Commun. 2004, 236–237. (h) Aroyan, C. E.;
Vasbinder, M. M.; Miller, S. J. Org. Lett. 2005, 7, 3849–3851. (i) Shi, M.;
Chen, L. H.; Li, C. Q. J. Am. Chem. Soc. 2005, 127, 3790–3800. (j) Krafft,
M. E.; Haxell, T. F. N.; Seibert, K. A.; Abboud, K. A. J. Am. Chem. Soc.
2006, 128, 4174–4175. (k) Teng, W.-D.; Huang, R.; Kwong, C. K.-W.;
Shi, M.; Toy, P. H. J. Org. Chem. 2006, 71, 368–371. (l) Nakano, A.;
Takahashi, K.; Ishihara, J.; Hatakeyama, S. Org. Lett. 2006, 8, 5357–5360.
(16) (a) Truce, W. E.; Wellisch, E. J. Am. Chem. Soc. 1952, 74, 2881–
2884. (b) Luis, A.-L.; Krische, M. J. Synthesis 2004, 2579–2585. (c)
Meadows, D. C.; Gervay-Hague, J. Med. Res. ReV. 2006, 26, 793–814. (d)
Oh, K. Org. Lett. 2007, 9, 2973–2975. (e) Esteves, A. P.; Silva, M. E.;
Rodrigues, L. M.; Oliveira-Campos, A. M. F.; Hrdina, R. Tetrahedron Lett.
2007, 48, 9040–9043. (f) Das, I.; Pal, T. K.; Pathak, T. J. Org. Chem. 2007,
72, 9181–9189.
(7) Valente, C.; Guedes, R. C.; Moreira, R.; Iley, J.; Gut, J.; Rosental,
P. J. Biorg. Med. Chem. Lett. 2006, 16, 4115–4119.
(8) Brzozowski, F.; Saczewski, F.; Neamati, N. Bioorg. Med. Chem.
Lett. 2006, 16, 5298–5302.
(9) McKerrecher, D.; Pike, K. G.; Waring, M. J. PCT Int. Appl.
2006125972, 2006.
(10) For an extensive list of both classical and transition-metal-catalyzed
cyclization reactions, see: Jime´nez-Hopkins, M.; Hanson, P. R. Org. Lett.
2008, 10, 2223–2226.
(11) (a) Loydl, F. Justus Liebigs Ann. C 1878, 192, 80–89. (b) Berkessel,
A. Methods of Organic Chemistry (Hueben-Weyl), 4th ed.; G. Thieme:
Stuttgart, 1952; Vol. E21e, pp 4818-4856, and references therein. (c)
Enders, D.; Haertwig, A.; Raabe, G.; Runsink, J. Angew Chem., Int. Ed.
1996, 35, 2388–2390, and references therein. (d) Shi, Y-L.; Shi, M. Org.
Biomol. Chem. 2007, 5, 1499–1504.
(12) Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972;
Chem. Abstr. 1972, 77, 34174q
.
(13) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. ReV. 2003,
(17) Reddick, J. J.; Cheng, J.; Roush, W. R. Org. Lett. 2003, 5, 1967–
1970.
103, 811–891
.
2952
Org. Lett., Vol. 10, No. 14, 2008