3
After that, the addition of N-benzyl amide to electron-deficient
alkene produces intermediate A (path I). Besides, another way to
form intermediate A cannot be excluded. Dimsyl anion was
formed by DMSO in the presence of base,17 and condensation of
amidine with benzaldehyde would provide intermediate 1,18
which followed by michael type addition with dimsyl anion to
produce intermediate A (path II). After the tautomerization of
intermediate A to intermediate B, the deprotonation affords
intermediate C. Then, intramolecular cycloaddition takes place to
produce cyclized intermediate D, which is oxidized by O2 leading
to intermediate E. Finally, the elimination of methanesulfinic
acid provides the final product 2,4,6-triphenyl pyrimidine.
Supplementary data associated with this article can be found,
in the online version, at
References and notes
1
(a) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. (b) Santos, M. F. C.;
Harper, P. M.; Williams, D. E.; Mesquita, J. T.; Pinto, E. G.; da Costa-
Silva, T. A.; Hajdu, E.; Ferreira, A. G.; Santos, R. A.; Murphy, P. J.; et
al J. Nat. Prod. 2015, 78, 110. (c) Pettit, G. R.; Tang, Y.; Zhang, Q.;
Bourne, G. T.; Arm, C. A.; Leet, J. E.; Knight, J. C.; Pettit, R. K.;
Chapuis, J.-C.; Doubek, D. L.; et al J. Nat. Prod. 2013, 76, 420.
(a) Sharpe, P. L.; Stevenson, T. M.; Deprez, N. R.; Reddy, R. P.;
Chittaboina, S. WO 2015089003, 2015. (b) Chen, W.; Li, Y.; Shi, Y.;
Wei, W.; Chen, Y.; Li, Y.; Liu, J.; Li, B.; Li, Z. Chem. Res. Chin. Univ.
2015, 31, 218.
2
3
(a) Ganesan, P.; Ranganathan, R.; Chi, Y.; Liu, X.-K.; Lee, C.-S.; Liu,
S.-H.; Lee, G.-H.; Lin, T.-C.; Chen, Y.-T.; Chou, P.-T. Chem. Eur. J.
2017, 23, 2858. (b) Wu, J.; Cheng, Y.; Lan, J.; Wu, D.; Qian, S.; Yan,
L.; He, Z.; Li, X.; Wang, K.; Zou, B.; et al J. Am. Chem. Soc. 2016, 138,
12803.
4
(a) Krol, M.; Benni, I.; Baiocco, P.; Rygiel, T.; Boffi, A. PCT Int. Appl.
WO 2016207257, 2016. (b) Erra, M.; Taltavull, J.; Greco, A.; Bernal, F.
J.; Caturla, J. F.; Gracia, J.; Dominguez, M.; Sabate, M.; Paris, S.; Soria,
S.; et al ACS Med. Chem. Lett. 2017, 8, 118. (c) Kent, C. R.; Bryja, M.;
Gustafson, H. A.; Kawarski, M. Y.; Lenti, G.; Pierce, E. N.; Knopp, R.
C.; Ceja, V.; Pati, B.; Walters, D. E.; et al Bioorg. Med. Chem. Lett.
2016, 26, 5476.
5
(a) Krol, M.; Benni, I.; Baiocco, P.; Rygiel, T.; Boffi, A. PCT Int. Appl.
WO 2016207257, 2016. (b) Erra, M.; Taltavull, J.; Greco, A.; Bernal, F.
J.; Caturla, J. F.; Gracia, J.; Dominguez, M.; Sabate, M.; Paris, S.; Soria,
S.; et al ACS Med. Chem. Lett. 2017, 8, 118. (c) Kent, C. R.; Bryja, M.;
Gustafson, H. A.; Kawarski, M. Y.; Lenti, G.; Pierce, E. N.; Knopp, R.
C.; Ceja, V.; Pati, B.; Walters, D. E.; et al Bioorg. Med. Chem. Lett.
2016, 26, 5476.
Scheme 3 Proposed Mechanism
In conclusion, we have developed a base-promoted formal
[4+1+1] annulation of aryl aldehyde, N-benzyl arylamidines and
DMSO to access to a series of 2,4,6-triaryl pyrimidines in
moderate to good yields. Notably, DMSO served as a methine
source, which was promoted by base rather than either Lewis
acid or electrophile. The molecular O2 was the sole eco-friendly
oxidant in this procedure.
6
7
(a) Maurya, S. S.; Khan, S. I.; Bahuguna, A.; Kumar, D.; Rawat, D. S.
Eur. J. Med. Chem. 2017, 129, 175. (b) Gilson, P. R.; Tan, C.; Jarman,
K. E.; Lowes, K. N.; Curtis, J. M.; Nguyen, W.; Di Rago, A. E.; Bullen,
H. E.; Prinz, B.; Duffy, S.; et al J. Med. Chem. 2017, 60, 1171.
(a) Gouhar, R. S.; Fathy, U.; El-Shehry, M. F.; El-Hallouty, S. M.
Pharm. Chem. 2016, 8, 134. (b) Phuangsawai, O.; Beswick, P.;
Ratanabunyong, S.; Tabtimmai, L.; Suphakun, P.; Obounchoey, P.;
Srisook, P.; Horata, N.; Chuckowree, I.; Hannongbua, S.; et al Eur. J.
Med. Chem. 2016, 124, 896.
Acknowledgments
We thank the National Natural Science Foundation of China (no.
21572025),
“Innovation
&
Entrepreneurship Talents”
8
Reviews: (a) Elkanzi, N. A. A. Heterocycl. Lett. 2013, 3, 247. (b) Gore,
R. P.; Rajput, A. P. Drug Invention Today 2013, 5, 148. (c) Wu, Q.;
Song, B.; Jin, L.; Hu, D. Youji Huaxue 2009, 29, 365. (d) Hill, M. D.;
Movassaghi, M. Chem. Eur. J. 2008, 14, 6836. (e) Tominaga, Y.; Kohra,
S.; Honkawa, H.; Hosomi, A. Heterocycles 1989, 29. 1409. (f) von
Angerer, S. In Science of Synthesis; George Thieme: Stuttgart, 2011; Vol
21, p 103. (g) Liu, T.; Fu, H. Synthesis 2012, 44, 2805.
Introduction Plan of Jiangsu Province, the Key University
Science Research Project of Jiangsu Province (15KJA150001),
Jiangsu Key Laboratory of Advanced Catalytic Materials
&Technology (BM2012110) and Advanced Catalysis and Green
Manufacturing Collaborative Innovation Center for financial
support. Sun thanks the National Natural Science Foundation of
China (no. 21602019) and Young Natural Science Foundation of
Jiangsu Province (BK20150263) for financial support.
9
Guo, W.; Li, C.; Liao, J.; Ji, F.; Liu, D.; Wu, W.; Jiang, H. J. Org.
Chem. 2016, 81, 5538.
Supplementary data