10.1002/chem.201804416
Chemistry - A European Journal
COMMUNICATION
this alternative disconnection to conventional glycosylation constitutes
a facile and expansive platform for the preparation of aryl glycosides.
Promoted by easily accessible electrophilic iodine(III) reagents, the
process does not require the classic pre-functionalisation / activation
sequence inherent to classical glycosylation methods. Validated for
both pyranosyl and furanosyl substrates, the reaction is compatible
with a variety of arylating agents and tolerates a range of protecting
groups and substituents. The process is particularly suited to the
synthesis of fluorinated glycostructures where the stereoelectronic
effects of the 2-fluoro substituent can be incorporated into the reaction
design to promote formation of α-configured products. Given the
generality of this enabling technology, we envisage that it will find
application in the preparation of complex acetals in a broader sense.
[10] M. D. Delost, D. T. Smith, B. J. Anderson, T. J. Njardarson, J. Med. Chem.
2018, DOI: 10.1021/acs.jmedchem.8b00876.
[11] T. J. Wadzinki, A. Steinauer, L. Hie, G. Pelletier, A. Schepartz, S. J. Miller,
Nat. Chem. 2018, 10, 644-652.
[12] K. Kitamura, Y. Ando, T. Matsumoto, K. Suzuki, Chem. Rev. 2018, 118, 1495-
1598.
[13] A. Vasella, K. Briner, N. Soundarajan, M. S. Platz, J. Org. Chem. 1991, 56,
4741-4744.
[14] For recent reviews, see: a) X. Li, J. Zhu, J. Carbohydr. Chem. 2012, 31, 284-
324; b) M. J. McKay, H. M. Nguyen, ACS Catal. 2012, 2, 1563-1595; c) X. Li,
J. Zhu, Eur. J. Org. Chem. 2016, 4724-4767.
[15] For recent reviews, see: a) R. D. Richardson, T. Wirth, Angew. Chem. Int. Ed.
2006, 45, 4402-4404; Angew. Chem. 2006, 118, 4510-4512; b) M. Ochiai, K.
Miyamoto, Eur. J. Org. Chem. 2008, 4229-4239; c) M. Uyanik, K. Ishihara,
Chem. Commun. 2009, 2086-2099; d) T. Dohi, Y. Kita, Chem. Commun. 2009,
2073-2085; d) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328-
3435.
Acknowledgements
[16] a) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052-9070;
Angew. Chem. 2009, 121, 9214-9234; b) B. Olofsson, Top. Curr. Chem. 2015,
343, 135-136; c) M. Wang, S. Chen, X. Jiang, Chem. Asian J. 2018 DOI:
10.1002/asia.201800609; c) G. Grelier, B. Darses, P. Dauban, Beilstein J. Org.
Chem. 2018, 14, 1508-1528.
This work was supported by the WWU Münster, the DFG (SFB 858,
and Excellence Cluster “Cells in Motion”) and the European Research
Council (ERC-2013-StG Starter Grant to RG).
Keywords: acetal • arylation • fluorine • stereoretention • sugars
[17] For examples of hypervalent iodine mediated O-arylation, see a) J. R.
Crowder, E. E. Glover, M. F. Grundon, H. X. Kaempfen, J. Chem. Soc. 1963,
4578-4585; b) T. B. Petersen, R. Khan, B. Olofsson, Org. Lett. 2011, 13, 3462-
3465; c) H. Gao, Q.-L. Xu, C. Keene, L. Kürti, Chem. Eur. J. 2014, 20, 8883-
8887; d) R. Ghosh, E. Stridfeldt, B. Olofsson, Chem. Eur. J. 2014, 20, 8888-
8892; e) R. Ghosh, B. Olofsson, Org. Lett. 2014, 16, 1830-1832; f) S. K.
Sundalam, D. R. Stuart, J. Org. Chem. 2015, 80, 6456-6466; g) T. L. Seidl, S.
K. Sundalam, B. McCullough, D. R. Stuart, J. Org. Chem. 2016, 81, 1998-
2009; h) E. Stridfeldt, E. Lindstedt, M. Reitti, J. Blid, P.-O. Norrby, B.
Olofsson, Chem. Eur. J. 2017, 23, 13249-13258; i) M. Reitti, R.
Gurubrahaman, M. Walther, E. Lindstedt, B. Olofsson, Org. Lett. 2018, 20,
1785-1788; j) X.-H. Li, A.-H. Ye, C. Liang, D.-L. Mo, Synthesis 2018, 50,
1699-1710.
[1]
a) Nature Insight: Glycochemistry and Glycobiology 2007, 446, 999-1051; b)
N. S. Sampson, M. Mrksich, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2001,
98, 12870-12871; c) C. R. Bertozzi, L. L. Kiessling, Science 2001, 291, 2357-
2364; d) T. J. Boltje, T. Buskas, G.-J. Boons, Nature Chem. 2009, 1, 611-622;
e) D. B. Werz, R. Ranzinger, S. Herget, A. Adibekian, C.-W. Von der Lieth, P.
H. Seeberger, ACS Chem. Biol. 2007, 2, 685-691; f) A. Adibekian, P.
Stallforth, M.-L. Hecht, D. B. Werz, P. Gagneux, P. H. Seeberger, Chem. Sci.
2010, 2, 337-344; g) P. H. Seeberger, in Essentials of Glycobiology (3rd
edition). Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press;
2015-2017. Chapter 2.
[2]
[3]
B. Ernst, J. L. Magnani, Nat. Rev. Drug Discov. 2009, 8, 661-677.
G. M. Sheldrick, P. G. Jones, O. Kennard, D. H. Williams, G. A. Smith,
Nature 1978, 271, 223-225.
[18] a) G. L. Tolnai, U. J. Nilsson, B. Olofsson, Angew. Chem. Int. Ed. 2016, 55,
11226-11230; Angew. Chem. 2016, 128, 11392-11396; b) Also see Y. Otsuka,
T. Yamamoto, K. Fukase, Synlett 2018, 29, 1510-1516.
[4]
For recent reviews on chemical glycosylation, see: a) M. M. Nielsen, C. M.
Pedersen, Chem. Rev. 2018, DOI: 10.1021/acs.chemrev.8b00144; b) P. O.
Adero, H. Amarasekara, P. Wen, L. Bohe, D. Crich, Chem. Rev. 2018, DOI:
10.1021/acs.chemrev.8b00083; c) M. Panza, S. G. Pistorio, K. J. Stine, A. V.
Demchenko, Chem. Rev. 2018, DOI: 10.1021/acs.chemrev.8b00051; d) H.-Y.
Wang, S. A. Blaszczyk, G. Xiao, W. Tang, Chem. Soc. Rev. 2018,
47, 681-701; e) W.-L. Leng, H. Yao, J.-X. He, X.-W. Liu, Acc. Chem. Res.
2018, 51, 628-639; f) P. Peng, R. R. Schmidt, Acc. Chem. Res. 2017, 50, 1171-
1183; g) B. Yu, J. Sun, X. Yang, Acc. Chem. Res. 2012, 45, 1227-1236; h) D.
Benito-Alifonso, M. C. Galan, in Selective Glycosylation: Synthetic
Methods and Catalysts (Ed. C. Bennet) Wiley‐VCH Verlag GmbH & Co.
KGaA, pp. 155-172 (2017).
[19] B. Ye, J. Zhao, K. Zhao, J. M. McKenna, F. D. Toste, J. Am. Chem. Soc. 2018,
DOI: 10.1021/jacs.8b05962.
[20] Full experimental details are provided in the Supporting Information.
[21] For selected examples reporting TMP as
a “dummy” ligand, see: a) E.
Lindstedt, M. Reitti, B. Olofsson, J. Org. Chem. 2017, 82, 11909-11914; b) V.
Carreras, A. H. Sandtorv, D. R. Stuart, J. Org. Chem. 2017, 82, 1279-1284; c)
For a review, see: D. R. Stuart, Chem. Eur. J. 2017, 23, 15852-15863.
[22] a) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008,
37, 320-330; b) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-
1886.
[23] A. Axer, S. Hermann, G. Kehr, D. Clases, U. Karst, L. Fischer-Riepe, J. Roth,
M. Fobker, M. Schäfers, R. Gilmour, A. Faust, ChemMedChem 2018, 13, 241-
250.
[5]
a) O. J. Plante, E. R. Palmacci, P. H. Seeberger, Science, 2001, 291, 1523-
1527; b) A. Pardo-Vargas, M. Delbianco, P. H. Seeberger, Curr. Opin. Chem.
Biol. 2018, 46, 48-55; c) L. Wen, G. Edmunds, C. Gibbons, J. Zhang, M. R.
Gadi, H. Zhu, J. Fang, X. Liu, Y. Kong, P. G. Wang, Chem. Rev. 2018, DOI:
10.1021/acs.chemrev.8b00066.
[24] C. Thiehoff, Y. P. Rey, R. Gilmour, Isr. J. Chem. 2017, 57, 92-100.
[25] For selected examples see: a) I. P. Street, J. B. Kempton, S. G. Withers,
Biochemistry 1992, 31, 9970-9978; b) S. A. Allman, H. H. Jensen, B.
Vijayakrishnan, J. A. Garnett, E. Leon, Y. Liu, D. C. Anthony, N. R. Sibson,
T. Feizi, S. Matthews, B. G. Davis, ChemBioChem 2009, 10, 2522-2529; c) C.
Bucher, R. Gilmour, Angew. Chem. Int. Ed. 2010, 49, 8724-8728; Angew.
Chem. 2010, 122, 8906-8910; d) E. Durantie, C. Bucher, R. Gilmour, Chem.
Eur. J. 2012, 18, 8208-8215; e) T. J. Kieser, N. Santschi, L. Nowack, G. Kehr,
T. Kuhlmann, S. Albrecht, R. Gilmour, ACS Chem. Neurosci. 2018, 9, 1159-
1165.
[6]
[7]
A. Michael, Am. Chem. J. 1879, 1, 305–312.
a) C. Sheridan, Nat. Biotechnol. 2012, 30, 899-900; b) A. Sadurni, G. Kehr, M.
Ahlqvist, H. Peilot Sjögren, C. Kankkonen, L. Knerr, R. Gilmour, Chem. Eur.
J. 2018, 24, 2832-2836.
[8]
[9]
T. P. Kogan, B. Dupré, H. Bui, K. L. McAbee, J. M. Kassir, I. L. Scott, X. Hu,
P. Vanderslice, P. J. Beck, R. A. F. Dixon, J. Med. Chem. 1998, 41, 1099–
1111.
D. Schwizer, H. Gäthje, S. Kelm, M. Porro, O. Schwardt, B. Ernst, Bioorg.
Med. Chem. 2006, 14, 4944-4957.
This article is protected by copyright. All rights reserved.