relatively low, these reactions are known to proceed through a
cyclic transition state, which should facilitate the transfer of
chirality to the products.15 While this principle has been
demonstrated with related aminations of chiral allyl selenides,
the authors distinctly point out that the stereochemical integ-
rity of the allylic rearrangement ‘‘must await methods for the
preparation of stereohomogenous allylic selenides.’’2
strating that chiral, nonracemic allylic amines and chlorides
can be readily obtained by a [2,3]-sigmatropic rearrangement
from a common allyl selenide precursor.
We thank the Petroleum Research Fund of the American
Chemical Society (44453-AC1) and the National Science
Foundation (CHE-0548081) for funding.
To this end, we treated the isolated enantioenriched allyl
selenide (R,R)-5g under the conditions reported for allylic
amination (eqn (6)).2 We were pleased to find the reaction
provided the desired allylic amine in good yield and very high
enantioselectivity. The conservation of enantiomeric excess
(cee) of this reaction was 96% and absence of the correspond-
ing diastereomer supports the hypothesis of a highly ordered
cyclic transition state for this stereospecific reaction.
Notes and references
1. Organoselenium Chemistry: A Practical Approach, ed. T. G. Back,
Oxford, New York, 1999Organoselenium Chemistry: Modern
Developments in Organic Synthesis, ed. T Wirth, Springer, Berlin,
2000.
2. R. G. Shea, J. N. Fitzner, J. E. Fankhauser, A. Spaltenstein,
P. A. Carpino, R. M. Peevey, D. V. Pratt, B. J. Tenge and
P. B. Hopkins, J. Org. Chem., 1986, 51, 5243; J. N. Fitzner,
R. G. Shea, J. E. Fankhauser and P. B. Hopkins, J. Org. Chem.,
1985, 50, 419; R. G. Shea, J. N. Fitzner, J. E. Fankhauser and
P. B. Hopkins, J. Org. Chem., 1984, 49, 419; J. E. Fankhauser,
R. M. Peevey and P. B. Hopkins, Tetrahedron Lett., 1984, 25, 15.
3. T. Hori and K. B. Sharpless, J. Org. Chem., 1979, 44, 4208.
4. K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1972, 94,
7154; H. J. Reich, J. Org. Chem., 1975, 40, 2570.
5. For examples of Se-chiral asymmetric [2,3]-sigmatropic rearrange-
ments, see: Y. Nishibayashi and S. Uemura, Top. Curr. Chem.,
2000, 208, 201.
6. D. M. Browne and T. Wirth, Curr. Org. Chem., 2006, 10, 1893;
T. Wirth, Angew. Chem., Int. Ed., 2000, 39, 3740; T. Wirth,
Tetrahedron, 1999, 55, 1, and references therein.
ð6Þ
Enantioselective formation of carbon–halogen bonds is an
important synthetic challenge. While the enantioselective
halogenation of ketones via chiral enolates or chiral halogen-
ating reagents is well known,16 the enantioselective halogena-
tion of less activated allylic systems still represents an obstacle
in synthesis. In light of the high retention of stereochemistry
for the [2,3]-sigmatropic rearrangement to form allylic amine
(S,S)-6g, we were curious if similar chirality transfer would be
possible from a chloroselenide derived from NCS. Therefore,
allyl selenide (R,R)-5g was treated with 1 equivalent of NCS in
CD2Cl2. We were pleased to find that mixture provided clean
conversion of allyl selenide (R,R)-5g to the allylic chloride in
1 h at room temperature (eqn (7)). Due to the volatility of the
allylic chloride, the yield was determined by 1H NMR spectro-
scopy based on an internal standard. Following reaction
completion, the reaction mixture was subjected to chiral-phase
gas chromatography, where the product was found to have
84% ee and a diastereomeric ratio of 16 : 1 in favor of the
desired product.
7. M. Iwaoka and S. Tomoda, Top. Curr. Chem., 2000, 208, 55.
Optically active alcohols can be converted to optically active alkyl
selenides in an enantiospecitic transformation: M. Zielinska-Bla-
jet, R. Siedlecka and J. Skarzewski, Tetrahedron: Asymmetry,
2007, 18, 131.
8. A. L. Braga, P. H. Schneider, M. W. Paixao and A. M. Deobald,
Tetrahedron Lett., 2006, 47, 7195; W. Munbunjong, E. H. Lee,
W. Chavasiri and D. O. Jang, Tetrahedron Lett., 2005, 46, 8769;
R. J. Cohen, D. L. Fox and R. N. Salvatore, J. Org. Chem., 2004,
69, 4265; B. C. Ranu, T. Mandal and S. Samanta, Org. Lett., 2003,
5, 1439; T. Nishino, M. Okada, T. Kuroki, T. Watanabe,
Y. Nishiyama and N. Sonoda, J. Org. Chem., 2002, 67, 8696.
9. S.-i. Fukuzawa, T. Fujinami and S. Sakai, Chem. Lett., 1990, 927;
X. J. Zhao, H. R. Zhao and X. Huang, Chin. Chem. Lett., 2002,
13, 396.
10. See ESIw for experimental details.
11. S. R. Waetzig and J. A. Tunge, J. Am. Chem. Soc., 2007, 129,
14860; S. R. Waetzig, D. K. Rayabarapu, J. D. Weaver and
J. A. Tunge, Angew. Chem., Int. Ed., 2006, 45, 4977;
D. K. Rayabarapu and J. A. Tunge, J. Am. Chem. Soc., 2005,
127, 13510; S. R. Mellegaard-Waetzig, D. K. Rayabarapu and
J. A. Tunge, Synlett, 2005, 2759.
12. B. J. Lussem and H. J. Gais, J. Org. Chem., 2004, 69, 4041.
13. A. L. Braga, D. S. Ludtke and F. Vargas, Curr. Org. Chem., 2006,
10, 1921; S.-L. You, X.-L. Hou and L.-X. Dai, Tetrahedron:
Asymmetry, 2000, 11, 1495.
14. H.-J. Gais, T. Jagusch, N. Spalthoff, F. Gerhards, M. Frank and
G. Raabe, Chem.–Eur. J., 2003, 9, 4202; S. Ramdeehul,
P. Dierkes, R. Aguado, P. C. J. Kamer, P. W. N. M. v.
Leeuwen and J. A. Osborn, Angew. Chem., Int. Ed., 1998, 37,
3118; H.-J. Gais, N. Spalthoff, T. Jagusch, M. Frank and
G. Raabe, Tetrahedron Lett., 2000, 41, 3809.
15. G. Dominguez, J. A. Hueso-Rodriguez, M. C. De la Torre and
B. Rodriguez, Tetrahedron Lett., 1991, 32, 4765–4768;
C. R. Johnson and S. J. Bis, J. Org. Chem., 1995, 60, 615–623.
16. M. Perseghini, M. Massaccesi, Y. Liu and A. Togni, Tetrahedron,
2006, 62, 7180; G. Guillena and D. J. Ramon, Tetrahedron:
Asymmetry, 2006, 17, 1465, and references thereinS. France,
A. Weatherwax and T. Lectka, Eur. J. Org. Chem., 2005, 475
and references therein.
ð7Þ
In conclusion, we have developed a palladium-catalyzed
decarboxylative selenylation reaction that affords allyl
selenides in good yields. Employing a chiral palladium catalyst
results in the kinetic resolution of selenocarbonates to provide
both the allyl selenide and selenocarbonate in high enantio-
selectivities. The synthesis of enantioenriched allyl selenides
allows for further manipulations of these products, demon-
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 3311–3313 | 3313