on a Bruker AXS CCD diffractometer with Mo-Ka radiation (l =
0.71073 A) at 223 K. The structures were solved by direct methods and
refined by a full matrix least squares technique based on F2 using
SHELXL 97 program.21 The hydrogen atoms on carbon were con-
strained. For complex 1, H atoms H1N, H1W, H2W, H3W, H4W
were located from difference map, the positions were refined with
constraints DFIX 0.90(2) for N–H, DFIX 0.85(2) for O–H, and DFIX
1.20(2) for Hꢀ ꢀ ꢀH of water, with thermal parameter at ꢁ1.2000 of the
relevant N or O. CCDC No.: 676819 (1) and 676820 (2).
1. (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
(b) Metal-Catalyzed Cross-coupling Reactions, ed. F Diederich
and P. J. Stang, VCH, Weinheim, 1998, ch. 2; (c) A. Suzuki,
J. Organomet. Chem., 1999, 576, 147; (d) Aqueous-Phase Organo-
metallic Catalysis, Concepts and Applications, ed. B Cornils and
W. A. Herrmann, Wiley-VCH, Weinheim, 1998.
Fig. 3 A perspective view of the structure of 2 (ellipsoids at 30%
level). (Pd–S 2.2920(5) and 2.2929(5) A; Pd–N 2.030(2) A; Pd–Cl
2.3075(6) A); Pd(1) deviated 0.0185 A from the mean-square plane of
the donors (S1, S2, N1, Cl1). H-bonding interaction of N1–H1Nꢀ ꢀ ꢀCl2
is observed.
2. A. L. Casalnuovo and J. C. Calabrese, J. Am. Chem. Soc., 1990,
112, 4324.
3. C. Na
2004, 346, 1798.
´
jera, J. Gil-Molto and S. Karlstrom, Adv. Synth. Catal.,
´
¨
room for the formation of a water channel in the form of water
steps. The anion lends additional stability to the 3-D structure by
connecting the hydrate to the cation. Collectively, they improve
the water compatibility of the pincer and mark a significant step
towards the construction of water-rich metallic materials. It also
expands the scope of aqueous catalysis and points a way forward
for water transport in inherently non-aqueous systems.
4. M. Nishimura, M. Ueda and N. Miyaura, Tetrahedron, 2002, 58,
5779.
5. Y. Kitamura, S. Sako, T. Udzu, A. Tsutsui, T. Maegawa,
Y. Monguchi and H. Sajiki, Chem. Commun., 2007, 5069.
6. Q. Yang, S. Ma, J. Li, F. Xiao and H. Xiong, Chem. Commun.,
2006, 2495.
7. (a) E. Vickerstaffe, A.-L. Villard, M. Ladlow and S. V. Ley,
Synlett, 2007, 1251; (b) C. Ramarao, S. V. Ley, S. C. Smith,
I. M. Shirley and N. DeAlmeida, Chem. Commun., 2002, 1132.
8. M. Ohff, A. Ohff, M. E. van der Boom and D. Milstein, J. Am.
Chem. Soc., 1997, 119, 11687.
9. (a) R. Huang and K. H. Shaughnessy, Organometallics, 2006, 25,
4105; (b) D. E. Bergbreiter, P. L. Osburn and Y.-S. Liu, J. Am.
Chem. Soc., 1999, 121, 9531; (c) P. Steenwinkel, H. Kooijman, W.
J. J. Smeets, A. L. Spek, D. M. Grove and G. van Koten,
Organometallics, 1998, 17, 5411.
This work was supported by the Agency for Science,
Technology & Research (Singapore) and the National Uni-
versity of Singapore (143-000-277-305). We are grateful to
Dr L. L. Koh and Ms G. K. Tan for assistance in the X-ray
diffraction experiments and structural refinement.
Notes and references
z Preparation: the SNS ligands L1 and L2 were prepared by literature
methods.20 Complexes 1 and 2 were prepared by a common procedure
as follows: an aqueous solution of K2[PdCl4] (326 mg, 1 mmol) was
mixed with an ethanol solution of L1 (249 mg, 1 mmol) or L2 (318 mg,
1 mmol). Upon standing for B2 weeks, yellowish prismatic crystals
suitable for X-ray diffraction experiments were collected. For 1, yield:
260 mg (56%). 1H-NMR (300 MHz, CDCl3, 25 1C): d = 1.05–1.08 (m,
12H, CH3), 1.82 (s, 4H, H2O), 1.95–2.13 (m, 2H, CH2CH(CH3)2),
2.81–3.49 (m, 12H, CH2). 13C-NMR (75.47 MHz, CDCl3, 25 1C): d =
21.1 (s, CH3), 22.0 (s, CH3), 27.8 (s, CH2CH(CH3)2), 39.5 (s,
CH2CH2S), 49.7 (s, SCH2CH), 54.9 (s, NHCH2CH2). Elemental
analysis calcd C12H31Cl2NO2PdS2 (462.8): C, 31.14; H, 6.75; N,
10. Z. Q. Weng, S. H. Teo, L. L. Koh and T. S. A. Hor, Organo-
metallics, 2004, 23, 3603.
11. Z. Q. Weng, S. H. Teo, L. L. Koh and T. S. A. Hor, Angew.
Chem., Int. Ed., 2005, 44, 7560.
12. S. H. Teo, Z. Q. Weng and T. S. A. Hor, Organometallics, 2006,
25, 1199.
13. Z. Q. Weng, S. H. Teo and T. S. A. Hor, Acc. Chem. Res., 2007,
40, 676.
14. S. K. Yen, L. L. Koh, H. V. Huynh and T. S. A. Hor, Dalton
Trans., 2007, 35, 3952.
15. F. W. Li, S. Q. Bai and T. S. A. Hor, Organometallics, 2008, 27, 672.
16. K. E. Neo, H. V. Huynh, L. L. Koh, W. Henderson and T. S.
A. Hor, J. Organomet. Chem., 2008, 693, 1628.
3.03. Found: C, 31.53; H, 6.57; N, 3.20%. Selected IR data (cmꢁ1
,
17. (a) S. Pal, N. B. Sankaran and A. Samanta, Angew. Chem., Int. Ed.,
2003, 42, 1741; (b) N.-H. Hu, Z.-G. Li, J.-W. Xu, H.-Q. Jia and
J.-J. Niu, Cryst. Growth Des., 2007, 7, 15; (c) Y. Jin, Y. Che,
S. R. Batten, P. Chen and J. Zheng, Eur. J. Inorg. Chem., 2007,
1925; (d) S. R. Choudhury, A. D. Jana, E. Colacio, H. M. Lee,
G. Mostafa and S. Mukhopadhyay, Cryst. Growth Des., 2007, 7, 212.
18. (a) R. Ludwig, Angew. Chem., Int. Ed., 2001, 40, 1808;
(b) J. M. Ugalde, I. Alkorta and J. Elguero, Angew. Chem.,
Int. Ed., 2000, 39, 717; (c) M. H. Mir and J. J. Vittal, Angew.
KBr): 3493 v, 3441 v, 3000 m, 2963 v, 2846 v, 1621 m, 1465 m, 1421 m,
1382 m, 1259 m, 496 m. For 2, yield: 350 mg (70%). 1H-NMR (300
MHz, (CD3)2SO, 25 1C): d = 2.81–3.13 (m, 8H, NHCH2CH2S),
4.44–4.58 (m, 4H, SCH2Ph), 7.40–7.56 (m, 10H, Phenyl H). 13C-
NMR (75.47 MHz, (CD3)2SO, 25 1C): d = 36.1 (s, SCH2Ph), 54.4
(s, NHCH2CH2S), 128.6, 129.2, 129.9, 133.7 (s, Ar-C). Elemental
analysis calcd C18H23Cl2NPdS2 (494.79): C, 43.69; H, 4.68; N, 2.83.
Found: C, 43.49; H, 4.61; N, 2.82%. Selected IR data (cmꢁ1, KBr):
3448 b, 2973 m, 2919 m, 2816 m, 2735 v, 1492 m, 1455 m, 1420 m, 1240
m, 1073 m, 1024 m, 1004 m, 799 m, 770 v, 700 v, 636 m. General
procedure for Suzuki–Miyaura coupling reactions: a 15 mL vial was
charged with activated or deactivated aromatic bromide (0.5 mmol),
aryl boronic acid (0.6 mmol), Na2CO3 (1 mmol), SNS–Pd catalyst (1),
and H2O (5 mL), the mixture was stirred at 75 1C in air for 6 h. The
products were assayed by GC-MS.
Chem., Int. Ed., 2007, 46, 5925; (d) Y. Marechal, The Hydrogen
´
Bond and the Water Molecule: The Physics and Chemistry of
Water, Aqueous and Bio Media, Elsevier, Oxford, UK, 2007;
(e) R. Miyamoto, R. T. Hamazawa, M. Hirotsu, T. Nishioka,
I. Kinoshita and L. J. Wright, Chem. Commun., 2005, 4047.
19. (a) S. Supriya and S. K. Das, New J. Chem., 2003, 27, 1568;
(b) R. J. Speedy, J. D. Madura and W. L. Jorgensen, J. Phys.
Chem., 1987, 91, 909; (c) A. C. Belch and S. A. Rice, J. Phys.
Chem., 1987, 86, 5676; (d) G. A. Jeffrey, An Introduction to
Hydrogen Bonding, OUP, Oxford, 1997, pp. 160–180.
20. (a) D. S. McGuinness, P. Wasserscheid, D. H. Morgan and
J. T. Dixon, Organometallics, 2005, 24, 552; (b) C. N. Temple,
S. Gambarotta, I. Korobkov and R. Duchateau, Organometallics,
2007, 26, 4598; (c) X.-Y. Le and J.-E. Shi, Chin. J. Inorg. Chem.,
1999, 15, 128.
y Crystal data for 1: formula C12H31Cl2NO2PdS2, yellow crystal,
triclinic space group P 1; a = 5.3641(7), b = 13.405(2), c =
ꢀ
15.300(2) A; a = 67.357(2), b = 84.856(2), g = 80.298(2)1; V =
1000.5(2) A3; Z = 2; crystal size: 0.40 ꢄ 0.10 ꢄ 0.06 mm3; GOF =
1.087; reflections collected: 8989; independent reflections: 3524 [Rint
=
0.0333]; R1 = 0.0446; wR2 = 0.1161. Crystal data for 2: formula
C18H23Cl2NPdS2, yellow crystals, monoclinic space group P21/n; a =
12.3815(6), b = 5.6441(3), c = 28.793(2) A; b = 99.376(1)1; V =
1985.2(2) A3; Z = 4; crystal size: 0.70 ꢄ 0.24 ꢄ 0.10 mm3; GOF =
1.027; reflections collected: 13376; independent reflections: 4540 [Rint
= 0.0270]; R1 = 0.0249; wR2 = 0.0621. Data 1 and 2 were collected
21. G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of Gottingen, Germany, 1997.
¨
ꢂc
This journal is The Royal Society of Chemistry 2008
3174 | Chem. Commun., 2008, 3172–3174