Efficient Synthesis of γ-Keto Esters
TABLE 1. Screening of Metal Catalysts for the Hydration of 1a
SCHEME 1. Directed Gold-Catalyzed Hydration of Alkynes
through Neighboring Group Assistance
functional groups. In 1991, Fukuda and co-workers reported
the use of a Au(III) salt in refluxing aqueous methanol for the
hydration of terminal alkynes to methyl ketones (Markovnikov
addition).11c But their hydration of internal alkynes was sluggish
and nonregioselective. Many other gold catalysts also have been
examined, but only terminal alkynes showed good regioselec-
tivity (Markovnikov products), and most reactions needed
elevated temperatures or strong acid cocatalysts.11
In general, the regioselective hydration of internal alkynes
may only proceed in the presence of a directing functionality
(like heteroatoms, or aromatic rings) nearby.13 We proposed
that with internal alkynes possessing a nucleophilic site, Nu,
nearby (Scheme 1), this nucleophile could attack a gold activated
triple bond to form two regioisomeric cyclic intermediates.
Although both carbons in the triple bond are prone to nucleo-
philic attack, one cyclic intermediate may be favored over the
other according to Baldwin’s rules. If Nu is a carboxylic ester,
this neighboring group assistance may then lead to a highly
regioselective synthesis of γ-keto esters through an alkyne
hydration process.
To test this hypothesis, we first examined the effect of
transition metal catalysts on the hydration of 3-alkynoate 1a
(Table 1). 3-Alkynoate 1 can be synthesized easily by using
our published procedure.14 Our selection of metal catalysts was
based on the known alkynophilicity of gold(I), gold(III),
a
Yields are based on H NMR. b CH2Cl2 saturated with water.
1
TABLE 2. Screening of Solvents and Additives
catalyst (5%)/
entry
additive
solvent
time, h yield,a
%
1
2
3
4
5
6
7
8
AuBr3
AuBr3
AuBr3
AuBr3
AuBr3
CH2Cl2 (S)b
12
12
72
12
12
12
12
12
12
24
24
12
12
12
12
12
12
70
17
trace
25
35
MeOH/H2O (10:1)
CH2Cl2/H2O (100:1)
t-BuOH/H2O (10:1)
CH3CN/H2O (10:1)
AuBr3/Bu4NBr (5%) CH2Cl2 (S)
6
AuBr3/Bu4NBr (5%) MeOH/H2O (10:1)
AuBr3/pyridine (5%) MeOH/H2O (10:1)
AuBr3/P(OEt)3 (5%) MeOH/H2O (10:1)
trace
NRd
NRd
33
complex
71
56
33
78
9
10
11
12
13
14
15
16
17
AuCl3
MeOH/H2O (10:1)
(6) (a) Tokunaga, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1998, 37, 2867.
(b) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149–6153. (c)
Grotjahn, D. B.; Lev, D. A. Chem. Ind. 2005, 104, 227–236.
(7) Halpern, J.; James, B. R.; Kemp, A. L. W. J. Am. Chem. Soc. 1961, 83,
4097.
(8) Blum, J.; Huminer, H.; Alper, H. J. Mol. Catal. 1992, 75, 153–160.
(9) Kim, S. Y.; Chin, C. S.; Eum, M.-S. J. Mol. Catal. A 2006, 253, 245–
248.
AuCl3/AgOTf (15%) MeOH/H2O (10:1)
NaAuCl4 ·2H2O
NaAuCl4 ·2H2O
NaAuCl4 ·2H2O
NaAuCl4 ·2H2O
NaAuCl4 ·2H2O
NaAuCl4 ·2H2O
CH2Cl2 (S)
t-BuOH/H2O
EtOH/H2O (50:1)
EtOH/H2O (4:1)
EtOH/H2O (1:1)
MeOH/H2O (10:1)
33
mixturec
(10) (a) Lucey, D. W.; Atwood, J. D. Organometallics 2002, 21, 2481–2490.
(b) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669–672. (c)
Hartman, J. W.; Hiscox, W. C.; Jennings, P. W. J. Org. Chem. 1993, 58, 7613–
7614. (d) Hiscox, W.; Jennings, P. W. Organometallics 1990, 9, 1997–1999.
(11) (a) Mizushima, E.; Cui, D.-M.; Nath, D. C. D.; Hayashi, T.; Tanaka,
M. Org. Synth. 2006, 83, 55–60. (b) Mizushima, E.; Sato, K.; Hayashi, T.;
Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563–4565. (c) Fukuda, Y.;
Utimoto, K. J. Org. Chem. 1991, 56, 3729–3731. (d) Casado, R.; Contel, M. a.;
Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925–11935.
(12) (a) Grotjahn, D. B.; Lev, D. A. J. Am. Chem. Soc. 2004, 126, 12232–
12233. (b) Liu, W.-J.; Li, J.-H. Youji Huaxue 2006, 26, 1073–1078. (c)
Vasudevan, A.; Verzal, M. K. Synlett 2004, 631–634. (d) Meier, I. K.; Marsella,
J. A. J. Mol. Catal. 1993, 78, 31–42. (e) Finiels, A.; Geneste, P.; Lasperas, M.;
Marichez, F.; Moreau, P. Stud. Surf. Sci. Catal. 1991, 59, 565–571. (f) Finiels,
A.; Geneste, P.; Marichez, F.; Moreau, P. Catal. Lett. 1989, 2, 181–184. (g)
Olah, G. A.; Meidar, D. Synthesis 1978, 671.
(13) (a) Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127–
3130. (b) Detert, H.; Meier, H. Liebigs Ann./Recl. 1997, 1565. (c) Utimoto, K.
Pure Appl. Chem. 1983, 55, 1845. (d) Stork, G.; Borch, R. J. Am. Chem. Soc.
1964, 86, 935. (e) Francisco, L. W.; Moreno, D. A.; Atwood, J. D. Organome-
tallics 2001, 20, 4237–4245. (f) Arcadi, A.; Cerichelli, G.; Chiarini, M.; Di
Giuseppe, S.; Marinelli, F. Tetrahedron Lett. 2000, 41, 9195–9198. (g) Jennings,
P. W.; Hartman, J. W.; Hiscox, W. C. Inorg. Chim. Acta 1994, 222, 317–322.
(14) (a) Wang, W.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3713–
3716. (b) Liu, L.-P.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3887–3890.
a Yields are based on 1H NMR. b CH2Cl2 saturated by water.
c Mixture of 2a and corresponding methyl ester. d NR ) no reaction.
platinum(II), and silver(I).15 A strong acid alone5 had no effect
on 1a (Table 1, entry 1). Treatment of 1a with Au(I) or PtCl2
catalysts gave traces of hydration product 2a at room temper-
ature (Table 1, entries 2-5). Conversely, the addition of a strong
acid to AuCl or Au(PPh3)Cl produced the desired ketone but in
less than desirable yields, due to side reactions induced by the
prevailing acidic conditions (Table 1, entries 6 and 7). On the
other hand, the use of Au(III) catalysts such as AuBr3, AuCl3,
or NaAuCl4 ·2H2O offered hope (Table 1, entries 8-10). We
decided to investigate the effects of solvents and additives/
ligands on the hydration of 1a employing Au(III) catalysts.
(15) Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc.
2006, 128, 9705–9710.
J. Org. Chem. Vol. 74, No. 4, 2009 1641