Functionalized 2′-Amino-R-L-LNA Phosphoramidites
antisense ONs,16-18 triplex-forming ONs,19 modified
DNAzymes,20 and transcription factor decoy ONs.21
We have previously taken advantage of the known high-
affinity hybridizations of 2′-amino-LNA6,22 (Figure 1) to develop
a series of N2′-functionalized 2′-amino-LNAs, which precisely
position functional entities in the minor groove of nucleic acid
duplexes without compromising duplex stability.23 This has
resulted in the development of tools for applications within
therapeutics, diagnostics, and material science, including (a)
probes yielding brightly fluorescent duplexes upon hybridization
to DNA/RNA targets with quantum yields approaching unity,23d,k
(b)probesforsinglenucleotidepolymorphism(SNP)detection,23b,h
(c) nucleic acid architectures autosignaling their self-assembly,23b,h
and (d) artificial dinuclear ribonucleases.23j
Stimulated by these findings, we recently developed a
synthetic route to 2′-amino-R-L-LNA (R-L-ribo configuration,
monomer Q, Figure 1)6,24 and N2′-functionalized analogs
thereof (Figure 1). Appended functional entities were anticipated
to be positioned in the major groove of nucleic acid duplexes.24a
However, initial studies with N2′-pyrene-functionalized 2′-
amino-R-L-LNA suggest that the conjugated functional entity
is directed toward the duplex core instead.25,26 This has already
resulted in the development of promising tools for DNA
targeting,25a detection of single nucleotide polymorphisms,25b
and nucleic acid structural engineering.25d
FIGURE 1. Structures of LNA, 2′-amino-LNA, R-L-LNA (monomer
O), and 2′-amino-R-L-LNA monomers Q-Z.
figuration, Figure 1) is a very promising member of this class
of compounds. LNA6-8 exhibits increases in thermal affinity
toward DNA/RNA complements of up to +10 °C per modifica-
tion along with markedly improved enzymatic stability relative
to that of unmodified oligodeoxyribonucleotides (ONs).9,10
These properties render LNA with pronounced therapeutic and
diagnostic potential,11-14 which is underlined by ongoing phase
I/II clinical evaluations of LNA drug candidates against a variety
of diseases. One of the diastereoisomers of LNA, i.e.,
R-L-LNA6,15 (R-L-ribo configuration, monomer O, Figure 1),
shares the beneficial properties of LNA and has been used as
Herein, full experimental details on the synthesis of a
structurally varied set of N2′-functionalized 2′-amino-R-L-LNA
phosphoramidites and their incorporation into ONs are presented
(Figure 1). Results from biophysical and computational studies
(5) For recent representative examples, see: (a) Morita, K.; Takagi, M.;
Hasegawa, C.; Kaneko, M.; Tsutsumi, S.; Sone, J.; Ishikawa, T.; Imanishi, T.;
Koizumi, M. Bioorg. Med. Chem. 2003, 11, 2211–2226. (b) Albaek, N.; Petersen,
M.; Nielsen, P. J. Org. Chem. 2006, 71, 7731–7740. (c) Honcharenko, D.;
Vargese, O. P.; Plashkevych, O.; Barman, J.; Chattopadhyaya, J. J. Org. Chem.
2006, 71, 299–314. (d) Varghese, O. P.; Barman, J.; Pathmasiri, W.; Plaskevych,
O.; Honcharenko, D.; Chattopadhyaya, J. J. Am. Chem. Soc. 2006, 128, 15173–
15187. (e) Hari, Y.; Obika, S.; Ohnishi, R.; Eguchi, K.; Osaki, T.; Ohishi, H.;
Imanishi, T. Bioorg. Med. Chem. 2006, 14, 1029–1038. (f) Plashkevych, O.;
Chatterjee, S.; Honcharenko, D.; Pathmasiri, W.; Chattopadhyaya, J. J. Org.
Chem. 2007, 72, 4716–4726. (g) Srivastava, P.; Barman, J.; Pathmasiri, W.;
Plaskevych, O.; Wenska, M.; Chattopadhyaya, J. J. Am. Chem. Soc. 2007, 129,
8362–8379. (h) Sabatino, D.; Damha, M. J. J. Am. Chem. Soc. 2007, 129, 8259–
8270. (i) Abdur Rahman, S. M.; Seki, S.; Obika, S.; Yoshikawa, H.; Miyashita,
K.; Imanishi, T. J. Am. Chem. Soc. 2008, 130, 4886–4896. (j) Enderlin, G.;
Nielsen, P. J. Org. Chem. 2008, 73, 6891–6894.
(6) We define LNA, R-L-LNA, 2′-amino-LNA, and 2′-amino-R-L-LNA as
a oligonucleotide containing one or more 2′-O,4′-C-methylene-ꢀ-D-ribofuranosyl
monomer(s), 2′-O,4′-C-methylene-R-L-ribofuranosyl monomer(s), 2′-amino-2′-
deoxy-2′-N,4′-C-methylene-ꢀ-D-ribofuranosyl monomer(s), or 2′-amino-2′-deoxy-
2′-N,4′-C-methylene-R-L-ribofuranosyl monomer(s), respectively. Similar defi-
nitions are used for N2′-functionalized R-L-LNA derivatives.
(7) (a) Singh, S. K.; Nielsen, P.; Koshkin, A. A.; Wengel, J. Chem. Commun.
1998, 455–456. (b) Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.;
Kumar, R.; Meldgaard, M.; Olsen, C. E.; Wengel, J. Tetrahedron 1998, 54, 3607–
3630. (c) Wengel, J. Acc. Chem. Res. 1999, 32, 301–310.
(17) Frieden, M.; Christen, S. M.; Mikkelsen, N. D.; Rosenbohm, C.; Thrue,
C. A.; Westergaard, M.; Hansen, H. F.; Ørum, H.; Koch, T. Nucleic Acids Res.
2003, 31, 6365–6372.
(18) Fluiter, K.; Frieden, M.; Vreijling, J.; Rosenbohm, C.; De Wissel, M. B.;
Christensen, S. M.; Koch, T.; Ørum, H.; Baas, F. ChemBioChem 2005, 6, 1104–
1109.
(19) Kumar, N.; Nielsen, K. E.; Maiti, S.; Petersen, M. J. Am. Chem. Soc.
2006, 128, 14–15.
(20) Vester, B.; Hansen, L. H.; Lundberg, L. B.; Babu, B. R.; Sørensen,
M. D.; Wengel, J.; Doubtwaite, S. BMC Mol. Biol. 2006, 7, 19.
(21) Crinelli, R.; Bianchi, M.; Gentilini, L.; Palma, L.; Sørensen, M. D.;
Bryld, T.; Babu, B. R.; Arar, K.; Wengel, J.; Magnani, M. Nucleic Acids Res.
2004, 32, 1874–1885.
(22) Singh, S. K.; Kumar, R.; Wengel, J. J. Org. Chem. 1998, 63, 10035–
10039.
(23) (a) Sørensen, M. D.; Petersen, M.; Wengel, J. Chem. Commun. 2003,
2130–2131. (b) Hrdlicka, P. J.; Babu, B. R.; Sørensen, M. D.; Wengel, J. Chem.
Commun. 2004, 1478–1479. (c) Babu, B. R.; Hrdlicka, P. J.; McKenzie, C. J.;
Wengel, J. Chem. Commun. 2005, 1705–1707. (d) Hrdlicka, P. J.; Babu, B. R.;
Sørensen, M. D.; Harrit, N.; Wengel, J. J. Am. Chem. Soc. 2005, 127, 13293–
13299. (e) Lindegaard, D.; Babu, B. R.; Wengel, J. Nucleosides Nucleotides
Nucleic Acids 2005, 24, 679–681. (f) Bramsen, J. B.; Laursen, M. B.; Damgaard,
C. K.; Lena, S. W.; Babu, B. R.; Wengel, J.; Kjems, J. Nucleic Acids Res. 2007,
35, 5886–5897. (g) Kalek, M.; Madsen, A. S.; Wengel, J. J. Am. Chem. Soc.
2007, 129, 9392–9400. (h) Umemoto, T.; Hrdlicka, P. J.; Babu, B. R.; Wengel,
J. ChemBioChem 2007, 8, 2240–2248. (i) Lindegaard, D.; Madsen, A. S.;
Astakhova, I. V.; Malakhov, A. D.; Babu, B. R.; Korshun, V. A.; Wengel, J.
Bioorg. Med. Chem. 2008, 16, 94–99. (j) Kalek, M.; Benediktson, P.; Vester,
B.; Wengel, J. Chem. Commun. 2008, 762–764. (k) Østergaard, M. E.; Maity,
J.; Wengel, J.; Hrdlicka, P. J. Abstracts of Papers, 235th ACS National Meeting
(2008), New Orleans, BIOL-032.
(24) (a) Hrdlicka, P. J.; Kumar, T. S.; Wengel, J. Nucleosides Nucleotides
Nucleic Acids 2005, 24, 1101–1104. (b) Kumar, T. S.; Madsen, A. S.; Wengel,
J.; Hrdlicka, P. J. J. Org. Chem. 2006, 71, 4188–4201.
(25) (a) Hrdlicka, P. J.; Kumar, T. S.; Wengel, J. Chem. Commun. 2005,
4279–4281. (b) Kumar, T. S.; Wengel, J.; Hrdlicka, P. J. ChemBioChem 2007,
8, 1122–1125. (c) Andersen, N. K.; Wengel, J.; Hrdlicka, P. J. Nucleosides
Nucleotides Nucleic Acids 2007, 26, 1415–1417. (d) Kumar, T. S.; Madsen, A. S.;
Østergaard, M. E.; Wengel, J.; Hrdlicka, P. J. J. Org. Chem. 2008, 73, 7060–
7066.
(8) Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J.; Morio, K.; Doi, T.; Imanishi,
T. Tetrahedron Lett. 1998, 39, 5401–5404.
(9) Petersen, M.; Wengel, J. Trends Biotechnol. 2003, 21, 74–81.
(10) Kaur, H.; Babu, B. R.; Maiti, S. Chem. ReV. 2007, 107, 4672–4697.
(11) Jepsen, J. S.; Wengel, J. Curr. Opin. Drug DiscoVery DeV. 2004, 7,
188–194.
(12) Frieden, M.; Ørum, H. IDrugs 2006, 9, 706–711.
(13) Gru¨nweller, A; Hartmann, R. K. Biodrugs 2007, 21, 235–243.
(14) Stenvang, J.; Silahtaroglu, A. N.; Lindow, M.; Elmen, J.; Kauppinen,
S. Sem. Cancer Biol. 2008, 18, 89–102.
(15) (a) Rajwanshi, V. K.; Håkansson, A. E.; Dahl, B. M.; Wengel, J. Chem.
Commun. 1999, 1395–1396. (b) Sørensen, M. D.; Kværnø, L.; Bryld, T.;
Håkansson, A. E.; Verbeure, B.; Gaubert, G.; Herdewijn, P.; Wengel, J. J. Am.
Chem. Soc. 2002, 124, 2164–2176.
(16) Arzumanov, A.; Stetsenko, D. A.; Malakhov, A. D.; Techelt, S.;
Sørensen, M. D.; Babu, B. R.; Wengel, J.; Gait, M. J. Oligonucleotides 2003,
13, 435–453.
(26) Preliminary results have been briefly outlined in Kumar, T. S.; Madsen,
A. S.; Wengel, J.; Hrdlicka, P. J. Nucleosides Nucleotides Nucleic Acids 2007,
26, 1403–1405.
J. Org. Chem. Vol. 74, No. 3, 2009 1071