J. Kaplan et al. / Bioorg. Med. Chem. Lett. 20 (2010) 640–643
643
O
OH
N
Cl
N
S
S
a
c
b
S
H2N
H2N
N
N
HO
Cl
20
21
22
O
O
O
N
S
S
S
d
e
N
N
N
Cl
N
N
O
23
24
R
H2N
N
N
H
H
Scheme 3. Reagents and conditions: (a) Triphosgene; (b) POCl3; (c) tributyl(3,6-dihydro-2H-pyran-4-yl)stannane, PdCl2(PPh3)2, THF; (d) 4-aminophenylboronic acid pinacol
ester, Pd(PPh3)4, PhCH3/EtOH; (e) Et3N, triphosgene, followed by appropriate amine.
inhibitors. Through the judicious choice of the urea substituent,
scaffold and morpholine replacement, the potency and selectivity
of the inhibitors may be modulated in order to obtain com-
pounds of a desired profile.
Table 3
2-Ureidophenyl-thieno[3,2-d]pyrimidines
O
References and notes
S
N
1. Yuan, T. L.; Cantley, L. C. Oncogene 2008, 27, 5497.
2. Choo, A. Y.; Yoon, S. O.; Kim, S. G.; Roux, P. P.; Blenis, J. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 17414.
O
N
R
N
H
3. Sarbassov, D. D.; Guertin, D. A.; Ali, S. M.; Sabatini, D. M. Science 2005, 307,
1098.
4. Carracedo, A.; Pandolfi, P. P. Oncogene 2008, 27, 5527.
5. Zask, A.; Verheijen, J. C.; Curran, K.; Kaplan, J.; Richard, D. J.; Nowak, P.;
Malwitz, D. J.; Brooijmans, N.; Bard, J.; Svenson, K.; Lucas, J.; Toral-Barza, L.;
Zhang, W.-G.; Hollander, I.; Gibbons, J. J.; Abraham, R. T.; Ayral-Kaloustian, S.;
Mansour, T. S.; Yu, K. J. Med. Chem. 2009, 52, 5013.
Compd
R
mTORa
P13Kaa
Sel.b
LNCapa
Micros.c
25
26
27
–NHCH2CH3
–NHCH2CH2F
–NHPh
3.3
2.5
7.2
1053
1373
28
319
560
4
470
1300
800
3
6
21
6. Nowak, P.; Ayral-Kaloustian, S.; Brooijmans, N.; Cole, D. C.; Curran, K. J.;
Ellingboe, J.; Gibbons, J. J.; Hu, B.; Hollander, I.; Kaplan, J.; Malwitz, D. J.;
Mansour, T. S.; Toral-Barza, L.; Verheijen, J. C.; Zask, A.; Zhang, W.-G.; Yu, K., J.
Med. Chem. doi: 10.1021/jm9012642.
7. Verheijen, J. C.; Richard, D. J.; Curran, K.; Kaplan, J.; Lefever, M.; Nowak, P.;
Malwitz, D. J.; Brooijmans, N.; Toral-Barza, L.; Zhang, W.-G.; Hollander, I.;
Ayral-Kaloustian, S.; Mansour, T. S.; Yu, K.; Zask, A., J. Med. Chem. doi: 10.1021/
jm9013828.
H
N
28
29
1.1
1.8
35
27
32
15
210
200
>30
>30
N
H
N
8. Yu, K.; Toral-Barza, L.; Shi, C.; Zhang, W.-G.; Lucas, J.; Shor, B.; Kim, J.;
Verheijen, J.; Curran, K.; Malwitz, D. J.; Cole, D. C.; Ellingboe, J.; Ayral-
Kaloustian, S.; Mansour, T. S.; Gibbons, J. J.; Abraham, R. T.; Nowak, P.; Zask, A.
Cancer Res. 2009, 69, 6232.
9. Zask, A.; Kaplan, J.; Verheijen, J.; Richard, D. J.; Curran, K.; Brooijmans, N.;
Bennett, E.; Toral-Barza, L.; Hollander, I.; Ayral-Kaloustian, S.; Yu, K., J. Med.
Chem. doi: 10.1021/jm901415x.
N
a
b
c
Average IC50 (nM). The average error for IC50 determinations was <25%.
P13K IC50/mTOR IC50
Nude mouse microsomes T1/2 (min).
a
.
10. The purity and identity of novel compounds was confirmed by HPLC, mass
spectrometry and 1H NMR.
11. Kiely, J. S.; Lesheski, L. E.; Schroeder, M. C. U.S. Patent 4,945,160, 1990.
12. Biological methods for determination of mTOR inhibition are described in:
Toral-Barza, L.; Zhang, W. G.; Lamison, C.; Larocque, J.; Gibbons, J.; Yu, K.
Biochem. Biophys. Res. Commun. 2005, 332, 304.
13. Biological methods for determination of PI3K inhibition are described in: Zask,
A.; Kaplan, J.; Toral-Barza, L.; Hollander, I.; Young, M.; Tischler, M.; Gaydos, C.;
Cinque, M.; Lucas, J.; Yu, K. J. Med. Chem. 2008, 51, 1319.
14. Biological methods for determination of inhibition of cellular proliferation are
described in: Yu, K.; Toral-Barza, L.; Discafani, C.; Zhang, W. G.; Skotnicki, J.;
Frost, P.; Gibbons, J. Endocr. Relat. Cancer 2001, 8, 249.
15. Biological methods for determination of microsomal stability are described in:
Tsou, H.-R.; Liu, X.; Birnberg, G.; Kaplan, J.; Otteng, M.; Tran, T.; Kutterer, K.;
Tang, Z.; Suayan, R.; Zask, A.; Ravi, M.; Bretz, A.; Grillo, M.; McGinnis, J. P.;
Rabindran, S. K.; Ayral-Kaloustian, S.; Mansour, T. S. J. Med. Chem. 2009, 52,
2289.
ity of the thienopyrimidines was similar to or slightly better than
that of the corresponding pyrazolopyrimidines. Consequently, the
thienopyrimidines were somewhat less selective for mTOR than
the pyrazolopyrimidines and may be of particular value for the
development of dual PI3K/mTOR inhibitors. In this respect, pyridi-
nyl ureas 28 and 29 are of interest due to the combination of
potent in vitro inhibition and excellent microsomal stability.
In summary, we have identified the 3,6-dihydro-2H-pyran
(DHP) as a suitable bioisostere for the morpholine group in
pyrazolopyrimidine and thienopyrimidine mTOR inhibitors.
Molecular modeling suggests that the DHP and morpholine
groups form the same essential hydrogen bond to Val2240 in
the hinge region of mTOR. The findings in this paper add to
our expanding repertoire for the design of mTOR and/or PI3K
16. Generated with ConfGen, version 2.1, Schrödinger, LLC, New York, NY, 2009.
17. Verheijen, J. C.; Yu, K.; Toral-Barza, L.; Hollander, I.; Zask, A. Bioorg. Med. Chem.
Lett. doi: 10.1016/j.bmcl.2009.10.075.