been found to afford the corresponding dioxolanone or
oxazolidinone system bearing an exo-alkylidene substituent.10
AninterestingexampleoftheAu-catalyzedcarbonyl-alkyne
cycloisomerization involves 5-exo-dig oxazole formation
starting from an N-propargyl-substituted amide. Since only
two reports of this transformation can be found in the
literature,11 we decided to further investigate the synthetic
potential of using substituted N-propargylamides and related
derivatives for the metal catalyzed synthesis of various
heterocyclic compounds. Catalytic alkyne cyclization of
N-propargylamides and related urea derivatives 1 can occur
either by cyclization of the carbonyl oxygen atom with the
alkynyl group leading to structure 2 or by reaction at the
in toluene in the presence of p-TsOH, the 4-methylene-2-
imidazolidinone derivative 7 very slowly isomerized to the
thermodynamically more stable 4-methyl-1,3-dihydroimida-
zol-2-one 9 (Scheme 2).
As a consequence of the preference of N-propargylureas
to form dihydroimidazolones instead of aminooxazoles, our
attention was next directed toward another class of N-
propargylamides bearing two nucleophilic centers, both of
which are capable of attacking the triple bond. With this in
mind, 3-oxo-N-propargylbutanamides 10 were synthesized
via standard procedures and were subjected to reaction using
AuCl3 as the catalyst in acetonitrile at room temperature
(Scheme 3). Under these conditions, amide 10a (R ) H)
was smoothly cyclized to the corresponding oxazole in 59%
yield. In contrast, when the amido nitrogen atom contained
a methyl group (i.e., 10b), no reaction occurred even at
elevated temperatures or by using other gold catalysts. Only
when 10b was allowed to react with in situ generated
Au(PPh3)OTf (derived from Au(PPh3)Cl and AgOTf) was a
small amount (<10%) of 5,6-dihydrofuro[3,4-c]pyrrol-4-one
14 detected in the crude reaction mixture by NMR spec-
troscopy. Since the other gold catalysts examined did not
produce any of compound 14, we thought that the presence
of trace amounts of a Ag salt in the mixture might be
responsible for the observed reactivity. Indeed, it is known
in the literature that aside from gold catalysts, other π-Lewis
Scheme 1
nucleophilic center (Nu) to produce a cyclized compound
such as 3 (Scheme 1).
In view of our group’s interest in substituted aminoox-
azoles, urea derivatives 4 were evaluated as potential
substrates for the gold-catalyzed formation of these structur-
ally interesting oxazoles (i.e., 8) (Scheme 2). We found that
(6) For examples, see: (a) Nieto-Oberhuber, C.; Perez-Galan, P.; Herrero-
Gomez, E.; Lauterbach, T.; Rodriguez, C.; Lopez, S.; Bour, C.; Rosellon,
A.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2008, 130, 269.
(b) Hashmi, A. S. K.; Kurpejovic, E.; Wo¨lfle, M.; Frey, W.; Bats, J. W.
AdV. Synth. Catal. 2007, 349, 1743. (c) Dai, L.-Z.; Qi, M.-J.; Shi, Y.-L.;
Liu, X.-G.; Shi, M. Org. Lett. 2007, 9, 3191. (d) Witham, C. A.; Mauleon,
P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007,
129, 5838. (e) Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006,
45, 1105. (f) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (g) Zhang,
L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962.
Scheme 2
(7) (a) Kirsch, S. F.; Binder, J. T.; Liebert, C.; Menz, H. Angew. Chem.,
Int. Ed. 2006, 45, 5878. (b) Zhang, J.; Schmalz, H.-G. Angew. Chem., Int.
Ed. 2006, 45, 6704. (c) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao,
H. Org. Lett. 2006, 8, 3445. (d) Yao, T.; Zhang, X.; Larock, R. C. J. Org.
Chem. 2005, 70, 7679. (e) Sromek, A. W.; Rubina, M.; Gevorgyan, V.
J. Am. Chem. Soc. 2005, 127, 10500. (f) Hashmi, A. S. K.; Schwarz, L.;
Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285.
(8) (a) Sato, K.; Menggenbateer; Kubota, T.; Asao, N. Tetrahedron 2008,
64, 787. (b) Dyker, G.; Hildebrandt, D. J. Org. Chem. 2005, 70, 6093. (c)
Sato, K.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2005, 70, 8977. (d) Kim,
N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005,
7, 5289. (e) Zhu, J.; Germain, A. R.; Porco, J. A. Angew. Chem., Int. Ed.
2004, 43, 1239. (f) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am.
Chem. Soc. 2003, 125, 10921. (g) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz,
K. Angew. Chem., Int. Ed. 2003, 42, 4399. (h) Asao, N.; Takahashi, K.;
Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650.
(9) (a) Rautenstrauch, V. J. Org. Chem. 1984, 49, 950. (b) Shi, X.; Gorin,
D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (c) Correa, A.;
Marion, N.; Fensterbank, L.; Malacria, M.; Nolan, S. P.; Cavallo, L. Angew.
Chem., Int. Ed. 2008, 47, 718. (d) Marion, N.; Nolan, S. P. Angew. Chem.,
Int. Ed. 2007, 46, 2750. (e) Yu, M.; Zhang, G.; Zhang, L. Org. Lett. 2007,
9, 2147. (f) Luo, T.; Schreiber, S. L. Angew. Chem., Int. Ed. 2007, 46, 1.
(g) Faza, O. N.; Lopez, C. S.; Alvarez, R.; de Lera, A. R. J. Am. Chem.
Soc. 2006, 128, 2434. (h) Fu¨rstner, A.; Hannen, P. Chem.sEur. J. 2006,
12, 3006. (i) Marion, N.; de Fremont, P.; Lemiere, G.; Stevens, E. D.;
Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 2048.
(j) Park, S.; Lee, D. J. Am. Chem. Soc. 2006, 128, 10664. (k) Binder, J. T.;
Kirsch, S. F. Org. Lett. 2006, 8, 2151.
the reaction of N-phenyl- and N-acyl-N′-propargylureas 4a,b
with Au(I)(PPh3)Cl or Au(III)Cl3 did not lead to any oxazole
formation as only starting material was recovered. However,
when N-tosyl-N′-propargylurea 4c was treated with AuCl3,
a clean conversion (68%) to the cyclic urea derivative 7 was
observed. This represents the first example of imidazolidi-
none formation by a Au-catalyzed reaction. Upon heating
(10) (a) Buzas, A.; Gagosz, F. Org. Lett. 2006, 8, 515. (b) Robles-
Machin, R.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2006, 71, 5023. (c)
Ritter, S.; Horino, Y.; Lex, J.; Schmalz, H.-G. Synlett 2006, 3309.
(11) (a) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org.
Lett. 2004, 6, 4391. (b) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura,
S. Chem. Commun. 2004, 2712.
4380
Org. Lett., Vol. 10, No. 19, 2008