C O M M U N I C A T I O N S
Scheme 2. Interconversions of Ir(III) and Ir(I) Speciesa
) 131.8 Hz. Similarly, ionization of 4a in the presence of hydrogen
led to heterolysis of the latter and formation of 3b-B(C6F5)4.
In summary, fundamental reactivity of NH-bearing NHC com-
plex 3a, its conjugate base 4a, and related species provide evidence
for structures A-D. Notably, the relationship of B and A with
different formal oxidation states is highlighted in Scheme 2.
Reactivity of 4a perhaps via C with acetylene or hydrogen leads
to D by bond activation prompted by the basic heterocyclic nitrogen.
Taken together, these results highlight new transformations made
possible in an NHC complex by the presence of an NH group, as
well as reactivity of the conjugate base at the free heterocyclic
nitrogen. Both types of secondary interaction are expected to expand
the possibilities of NHC complexes in organometallic chemistry
and catalysis.
a Conditions: (a) C6D6, toluene-d8, or THF-d8, room temp, <10 min;
(b) CH3OTf, C6D6, -40 °C to room temp; (c) CH3CH2CH2CH2-I, THF-
d8, -78 °C to room temp.
Scheme 3. Reactions Using Ionizing Reagentsa
Acknowledgment. We thank the NSF for partial support of this
work.
Supporting Information Available: Details of compound prepara-
tion and characterization, and CIF files for structures of 3a and 4a.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) For reviews, see: (a) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed.
2008, 47, 3122. (b) Pugh, D.; Danopoulos, A. Coord. Chem. ReV. 2007,
251, 610. (c) D´ıez-Gonza´lez, S.; Nolan, S. P. Coord. Chem. ReV. 2007, 251,
874. (d) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
(2) (a) Araki, K.; Kuwata, S.; Ikariya, T. Organometallics 2008, 27, 2176. (b)
Wang, X.; Hongyu, C.; Li, X. Organometallics 2007, 26, 4684. (c) Ruiz, J.;
Perandones, B. F. J. Am. Chem. Soc. 2007, 129, 9298. (d) Meier, N.; Hahn,
F. E.; Pape, T.; Siering, C.; Waldvogel, S. Eur. J. Inorg. Chem. 2007, 1210.
(e) Burling, S.; Mahon, M. F.; Powel, R. E.; Whittlesey, M. K.; Williams,
J. M. J. J. Am. Chem. Soc. 2006, 128, 13702. (f) Wiedemann, S. H.; Lewis,
J. C.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2006, 128, 2452.
(g) Lewis, J.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett.
2004, 6, 35. (h) Sundberg, R. J.; Bryan, R. F.; Taylor, I. F., Jr.; Taube, H.
J. Am. Chem. Soc. 1974, 96, 381. (i) Hahn, F. E.; Langenhahn, V.; Pape, T.
Chem. Commun. 2005, 5390. (j) Basato, M.; Benetollo, F.; Faccin, G.;
Michelin, R. A.; Mozzon, M.; Pugliese, S.; Sgarbossa, P.; Sbovata, S. M.;
Tassan, A. J. Organomet. Chem. 2004, 689, 454. (k) Hahn, F. E.;
Langenhahn, V.; Lugger, T.; Pape, T.; Le Van, D. Angew. Chem., Int. Ed.
2005, 44, 3759.
a Conditions: (a) C6D6, -40 °C to room temp, 1-2 h; (b) KB(C6F5)4,
THF-d8, 70 °C, 16 h (9a), 21 h (9b); (c) KB(C6F5)4, THF-d8, room temp,
67 h (3b), 4 d (9).
´
(3) (a) Alvarez, E.; Conejero, S.; Lara, P.; Lo´pez, J. A.; Paneque, M.; Petronilho,
A.; Poveda, M. L.; del R´ıo, D.; Serrano, O.; Carmona, E. J. Am. Chem. Soc.
2007, 129, 14130. (b) Esteruelas, M. A.; Ferna´ndez-Alvarez, F. J.; On˜ate,
E. Organometallics 2007, 26, 5239. (c) Buil, M. L.; Esteruelas, M. A.;
Garce´s, K.; Oliva´n, M.; On˜ate, E. J. Am. Chem. Soc. 2007, 129, 10998. (d)
Alvarez, E.; Conejero, S.; Paneque, M.; Petronilho, A.; Poveda, M. L.;
Serrano, O.; Carmona, E. J. Am. Chem. Soc. 2006, 128, 13060. (e) Kunz,
D. Angew. Chem., Int. Ed. 2007, 46, 3405. (f) Crociani, B.; Di Bianca, F.;
Fontana, A.; Forsellini, E.; Bombieri, G. J. Chem. Soc., Dalton. Trans. 1994,
407. (g) Crociani, B.; Di Bianca, F.; Fontana, A.; Bertani, R. J. Organomet.
Chem. 1992, 425, 155. (h) Crociani, B.; Di Bianca, F.; Giovenco, A.;
Scrivanti, A. J. Organomet. Chem. 1983, 251, 393. (i) Isobe, K.; Kawaguchi,
S. Heterocycles 1981, 16, 1603.
contact with water. Conversion of 4b to 5 would be an example of
transforming B to A, perhaps driven by the highly electropositive
nature of X ) Li in the latter species.
Thus far, alkylation reactions of 5 have occurred at the metal
1
(Scheme 2), giving 6a or 6b. In 6a, the Ir-CH3 unit showed H
3
and 13C NMR resonances at -0.03 ppm (d, JHP ) 5.2 Hz) and
2
-21.1 (d, JCP ) 8.2 Hz), respectively.
(4) Grotjahn, D. B.; Miranda-Soto, V.; Kragulj, E. J.; Lev, D. A.; Erdogan, G.;
Zeng, X.; Cooksy, A. L. J. Am. Chem. Soc. 2008, 130, 20 and references
therein.
Ionization of the chloride ligand in 4a could allow formation of
structure C, at least transiently. Adding CH3OTf to 4a,b gave
carbenes 7a,b (Scheme 3), rather than formation of either CH4 or
CH3Cl. The N-CH3 protons of 7a and 7b appeared as singlets
near 4 ppm, whereas the hydride in 7b was revealed by a doublet
(5) For observation of a mixture of (hydrido)acyl and hydroxycarbene complexes
and ambident reactivity, see: Casey, C. P.; Czerwinski, C. J.; Hayashi, R. K.
J. Am. Chem. Soc. 1995, 117, 4189.
(6) Enhanced basicity and nucleophilicity of 2-pyridyl metal complexes has been
noted.3f-i
(7) See Supporting Information for full details.
2
(8) See for example, ref 3d, with a hydrogen bond between an NHC NH and
metal-bound OH ligand.
(-15.90, JHP ) 27.6 Hz). In contrast, chloride abstraction from
4a by KB(C6F5)4 was observed, though not until other reactants
were added. Propene or 1-methylimidazole coordinated to the metal,
giving 8a or 8b. In principle, two diastereomers of 8a are possible,
but the ratio must be >10:1 because only one major isomer could
be seen in 81% yield, along with two minor species. In the case of
acetylene, the heterocyclic nitrogen acts as a base, forming acetylide
carbene complex 9, an example of B f C f D. The use of
H13C13CH allowed full identification of the structure shown, 1JCC
(9) As a solution made in toluene-d8 is cooled below-10 °C, decoalescence of
the peaks for the CH2CH2PPh2 unit begins, plausibly consistent with slowing
of the flipping of the metallacycle ring in 5 or with slowing of interconversion
of Ir(III) valence tautomer 6c (R ) Li) and its enantiomer. If indeed 6c is
the ground state structure, in order for the Li to move from one (hindered)
face of the complex to the other, it would seem that 5 is a likely intermediate.
For whatever site exchange process is occurring, VT NMR data show Ea )
11.8 kcal mol-1. 7Li NMR chemical shift data were not diagnostic. Attempts
to crystallize 5 for X-ray diffraction continue.
JA804713U
9
J. AM. CHEM. SOC. VOL. 130, NO. 40, 2008 13201