Organic Letters
Letter
(9) Zhu, C.; Xia, J.-B.; Chen, C. Org. Lett. 2014, 16, 247.
(10) Teng, F.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun.
2014, 50, 8412.
In conclusion, we have developed a new one-pot protocol for
the N-cyanation of secondary amines that employs inexpensive
trichloroacetonitrile as the cyano source and is applicable to a
diverse array of cyclic and acyclic substrates. Ongoing studies are
focused on further applications of trichloroacetonitrile in
synthesis, and these results will be reported in due course.
(11) Teng, F.; Yu, J.-T.; Zhou, Z.; Chu, H.; Cheng, J. J. Org. Chem. 2015,
80, 2822.
(12) Talavera, G.; Pena, J.; Alcarazo, M. J. Am. Chem. Soc. 2015, 137,
8704.
̃
ASSOCIATED CONTENT
■
S
(13) Houben, J.; Fischer, W. Ber. Dtsch. Chem. Ges. B 1930, 63, 2464.
(14) Sherif, S. M.; Erian, A. W. Heterocycles 1996, 43, 1083.
(15) To the best of our knowledge, this is the first report that utilizes
trichloroacetonitrile in a N-cyanation process. For reports that describe
the reactivity of secondary amines with trichloroacetonitrile, see:
(a) Backer, H. J.; Wanmaker, W. L. Recl. Trav. Chim. Pays-Bas 1951, 70,
638.(b)Grivas, J.C.;Taurins,A.Can.J.Chem.1958,36,771.(c)Grivas, J.
C.; Taurins, A. Can. J. Chem. 1959, 37, 795. (d) Grivas, J. C.; Taurins, A.
Can.J.Chem.1959,37,1260.(e)Saari,W.S.;Freedman, M.B.;Huff,J.R.;
King, S. W.; Raab, A. W.;Bergstrand, S. J.; Engelhardt, E. L.; Scriabine, A.;
Morgan, G.;Morris, A.;Stavorski, J. M.;Noll, R. M.;Duggan, D. E. J. Med.
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
Optimization data, experimental procedures, character-
ization of new compounds and spectral data (PDF)
AUTHOR INFORMATION
■
Corresponding Authors
Notes
́
Chem. 1978, 21, 1283. (f) L’Abbe, G.; Albrecht, E. J. Heterocycl. Chem.
1992, 29, 451. (g) Bock, M. G.; DiPardo, R. M.; Evans, B. E.; Rittle, K. E.;
Veber, D. F.; Freidinger, R. M.; Chang, R. S. L.; Lotti, V. J. J. Med. Chem.
1988, 31, 176. (h) Dunsford, J. J.; Camp, J. E. Tetrahedron Lett. 2013, 54,
4522.
The authors declare no competing financial interest.
Informationaboutthedatathatunderpinstheresultspresentedin
this article, including how to access them, can be found in the
(16) For safety information, see the Hazardous Substances Data Bank
on the Toxicology Data Network of the U.S. National Library of
13, 2016).
(18) 1,2-Dimethoxyethane (DME) was the preferred solvent, as
products arising from solvent decomposition were occasionally observed
in THF.
(19) Control experiments showed that the removal of trichloro-
acetonitrile prior to the elimination step was essential for reproducible
high yields in this process.
(20) Kanzian, T.; Nigst, T. A.; Maier, A.; Pichl, S.; Mayr, H. Eur. J. Org.
Chem. 2009, 2009, 6379.
(21) Cu-, Au-, Ag-, and Pt-based additives (10 mol %) were tested
including PtCl2, which was shown by Camp and co-workers to catalyze
thereactionofprimaryandsecondaryamineswithtrichloroacetonitrilein
nonpolar solvents. See ref 15h.
(22) Vogel, E.; Klug, W.; Breuer, A. Org. Synth. 1974, 54, 11.
(23) Vivekanand, P. A.; Wang, M.-L. Catal. Commun. 2012, 22, 6.
(24) For all other amine substrates tested, the addition of 4-
methylstyrene had no effect on isolated product yield. 2,3-Dimethyl-2-
butene can also be employed as a dichlorocarbene scavenger.
(25) Heating the reaction mixture to 80 °C for 24 h without imidazole
gave 40% and <5% conversion to the corresponding amidines,
respectively.
(26) At this time, primary amines are also out with the scope of the
described methodology. The reactions of anilines (Lester, R. P.; Camp, J.
E. ACSSustainableChem. Eng. 2013, 1, 545)andbenzylamines(Yavari, I.;
Malekafzali, A.; Skoulika, S. Tetrahedron Lett. 2014, 55, 3154) with
trichloroacetonitrile to form the corresponding amidines are known.
However, we have not yet been able to determine suitable reaction
conditions to affect conversion of these amidines to the corresponding
cyanamides.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the School of Chemistry, Cardiff
University for generous support and the EPSRC UK National
Mass Spectrometry Facility at Swansea University.
REFERENCES
■
(1) Matsunaga, S.; Kobayashi, H.; van Soest, R. W. M.; Fusetani, N. J.
Org. Chem. 2005, 70, 1893.
(2) Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.;
Huang, J. Z.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.;
Nugent, B. M.; Renga, J. M.; Denholm, I.; Gorman, K.; DeBoer, G. J.;
Hasler, J.; Meade, T.; Thomas, J. D. J. Agric. Food Chem. 2011, 59, 2950.
́
(3)Laine,D.;Palovich,M.;McCleland,B.;Petitjean,E.;Delhom,I.;Xie,
H.; Deng, J.; Lin, G.; Davis, R.; Jolit, A.; Nevins, N.; Zhao, B.; Villa, J.;
Schneck, J.; McDevitt, P.; Midgett, R.; Kmett, C.; Umbrecht, S.; Peck, B.;
Davis, A. B.; Bettoun, D. ACS Med. Chem. Lett. 2011, 2, 142.
(4) Feldman, P. L.; Brackeen, M. F.; Cowan, D. J.; Marron, B. E.;
Schoenen, F. J.; Stafford, J. A.; Suh, E. M.; Domanico, P. L.; Rose, D.;
Leesnitzer, M. A.; Sloan Brawley, E.; Strickland, A. B.; Vergese, M. W.;
Connolly, K. M.; Bateman-Fite, R.; Staton Noel, L.; Sekut, L.; Stimpson,
S. A. J. Med. Chem. 1995, 38, 1505.
(5) (a) Crutchley, R. J. Coord. Chem. Rev. 2001, 219, 125. (b) Larraufie,
M.-H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Laco
Synthesis 2012, 44, 1279.
(6) For selected examples of guanidine synthesis, see: (a) Larraufie, M.-
H.; Ollivier, C.; Fensterbank, L.; Malacria, M.; Lacote, E. Angew. Chem.,
Int. Ed. 2010, 49, 2178. (b) Zhou, L.; Chen, J.; Zhou, J.; Yeung, Y.-Y. Org.
Lett. 2011, 13, 5804. For selected examples of heterocycle synthesis, see:
(c) Giles, R. L.; Sullivan, J. D.; Steiner, A. M.; Looper, R. E. Angew. Chem.,
Int. Ed. 2009, 48, 3116. (d) Stolley, R. M.; Maczka, M. T.; Louie, J. Eur. J.
Org. Chem. 2011, 2011, 3815.
(7) For pioneering studies, see: (a) Wallach, O. Ber. Dtsch. Chem. Ges.
1899, 32, 1872. (b) Braun, J. v. Ber. Dtsch. Chem. Ges. 1900, 33, 1438.
(c)Scholl,R.;Norr,W.Ber.Dtsch.Chem.Ges.1900,33,1555. Forselected
recentapplicationsinsynthesis,see:(d)Goldberg,K.;Clarke,D.S.;Scott,
J. S. Tetrahedron Lett. 2014, 55, 4433. (e) Hashimoto, T.; Ishii, S.; Yano,
R.; Miura, H.; Sakata, K.; Takeuchi, R. Adv. Synth. Catal. 2015, 357, 3901.
(8) For safety information, see the Hazardous Substances Data Bank on
the Toxicology Data Network of the U.S. National Library of Medicine,
̂
te, E.
̂
(27) Substitution of imidazole (10 mol %) for triethylamine (10 mol %)
gave 34% conversion to the corresponding amidine.
(28) (a) Brackeen, M. F.; Cowan, D. J.; Stafford, J. A.; Schoenen, F. J.;
Veal, J. M.; Domanico, P. L.; Rose, D.; Strickland, A. B.; Verghese, M.;
Feldman,P.L.J.Med.Chem.1995,38,4848.(b)Li,L.;Chen,M.;Jiang,F.-
C. Bioorg. Med. Chem. 2016, 24, 1853. (c) Yang, X.-F.; Ding, C.-H.; Li, X.-
H.;Huang,J.-Q.;Hou,X.-L.;Dai,L.-X.;Wang,P.-J.J.Org.Chem.2012,77,
8980.
̈
D
Org. Lett. XXXX, XXX, XXX−XXX