6
S. HAN ET AL.
4-methyl-5-thiazoleacetic acid: X-ray crystal structures of poly-
meric Me3Sn[O2CCH2(C4H3NS)S]SnMe3 and Ph3Sn[O2CCH2
(C4H3NS)S]SnPh3. J. Inorg. Organomet. Polym. Mater 2005, 15,
Conclusion
This contribution has shown that the combination of
triphenyltin (IV) moiety with the 2,4-dichlorophenyl acrylic
acid result in the formation of a chain polymer. The inter-
molecular hydrogen bonds of C-HꢀꢀꢀCl play an important
role in the 2 D network structure. The calculation results
show reasonable electronic configurations of the central
Sn atoms. In addition, complex1 has good thermal stability
and exhibit the red shifts in solid state. These properties
are expected to have further applications in the future.
[12] Chandrasekhar, V.; Gopal, K.; Sasikumar, P.; Thirumoorthi, R.
Organooxotin assemblies from snc bond cleavage reactions .
[13] Hadi, A. G.; Jawad, K.; Ahmed, D. S.; Yousif, E. Srp. 2019, 10,
[14] Chandrasekhar, V.; Nagendran, S.; Baskar, V. Organotin assem-
blies containing SnAO bonds. Coord. Chem. Rev 2002, 235,
[15] Chandrasekhar, V.; Thirumoorthi, R. Reactions of 3,5-pyrazoledi-
carboxylic acid with organotin chlorides and oxides.
Coordination polymers containing organotin macrocycles.
[16] Yin, H. D.; Chen, S. W.; Li, L. W.; Wang, D. Q. Synthesis,
characterization and crystal structures of the organotin(IV)
compounds with the schiff base ligands of pyruvic acid
thiophene-2-carboxylic hydrazone and salicylaldehyde thiophene-
2-carboxylic hydrazone. Inorganica Chimica Acta 2007, 360,
[17] Hadjikakou, S. K.; Hadjiliadis, N. Antiproliferative and anti-
tumor activity of organotin compounds. Coord. Chem. Rev 2009,
[18] Wang, H.; Hu, L.; Du, W.; Tian, X. H.; Zhang, Q.; Hu, Z. J.;
Luo, L.; Zhou, H. P.; Wu, J. Y.; Tian, Y. P. Two-photon active
organotin(IV) carboxylate complexes for visualization of anti-
cancer action. ACS Biomater. Sci. Eng. 2017, 3, 836–842. DOI:
Acknowledgments
We thank the National Natural Science Foundation of China (No.
21805110) for financial support.
References
[1] Sun, Y. X.; Sun, W. Y. Zinc( ii )– and cadmium( ii )–organic
frameworks with 1-imidazole-containing and 1-imidazole-
carboxylate ligands. Cryst. Eng. Comm 2015, 17, 4045–4063.
[2] Rowsell Rowsell, J. L. C.; Yaghi, O. M. Metal–organic frame-
works:
a
new class of porous materials. Microporous
[3] Long, J. R.; Yaghi, O. M. The pervasive chemistry of metal–or-
ganic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214. DOI:
[19] Rosenberg, E. Persistent organic pollutants and toxic metals in
foods 2013, 430–475.
[4] Batten, S. R.; Champness, N. R.; Chen, X. M.; et al. Cryst. Eng.
[5] Zou, R. Q.; Sakurai, H.; Xu, Q. Preparation, adsorption
properties, and catalytic activity of 3D porous metal–organic
frameworks composed of cubic building blocks and alkali-metal
ions. Angew. Chem. Int. Ed. 2006, 45, 2542–2546. DOI:
[7] Nasalevich, M. A.; Becker, R.; Ramos Fernandez, E. V.;
Castellanos, S.; Veber, S. L.; Fedin, M. V.; Kapteijn, F.; Reek,
J. N. H.; van der Vlugt, J. I.; Gascon, J. Co@NH 2-MIL-125(Ti):
Cobaloxime-Derived Metal–Organic Framework-Based Composite
for Light-Driven H 2 Production. Energy Environ. Sci. 2015,
[6] Ning, G. H.; Tian, B.; Tan, L. M.; Ding, Z.; Herng, T. S.;
Ding, J.; Loh, K. P. Networked spin cages: tunable magnetism
and lithium ion storage via modulation of spin-electron
interactions. Inorg. Chem. 2016, 55, 9892–9897. DOI: 10.1021/
[7] Banerjee, R.; Furukawa, H.; Knobler, D.; Britt, C.; Keeffe,
M. O.; Yaghi, O. M. Control of pore size and functionality in
isoreticular zeolitic imidazolate frameworks and their carbon
dioxide selective capture properties. J. Am. Chem. Soc. 2009,
[20] Kovala-Demertzi, D.; Dokorou, V. N.; Jasinski, J. P.; Opolski,
A.; Wiecek, J.; Zervou, M.; Demertzis, M. A. Organotin flufena-
mates: Synthesis, characterization and antiproliferative activity
of organotin flufenamates. J. Organomet. Chem 2005, 690,
[21] Guan, R.; Zhou, Z.; Zhang, M.; Liu, H.; Du, W.; Tian, X.;
Zhang, Q.; Zhou, H.; Wu, J.; Tian, Y. Organotin(IV) carboxyl-
ate complexes containing polyether oxygen chains with two-photon
absorption in the near infrared region and their anticancer activity.
[22] Chandrasekhar, V.; Gopal, K.; Thilagar, P. Nanodimensional
organostannoxane molecular assemblies. Acc. Chem. Res. 2007,
[23] Zhang, Z. J.; Zeng, H. T.; Liu, Y.; Kuang, D. Z.; Zhang, F. X.;
Tan, Y. X.; Jiang, W. J. Synthesis, crystal structure and anti-
cancer activity of the dibutyltin(IV)oxide complexes containing
substituted salicylaldehyde- o -Aminophenol Schiff base with
appended donor functionality. Inorg. Nano-Met. Chem 2018,
[24] Mazhar, M.; Choudhary, M. A.; Ali, S.; Xie, Q. L.; Song, X. Q.
Chem. Soc. Pak 2001, 23, 103–131.
[25] Augustine, J. K.; Naik, Y. A.; Mandal, A. B.; Chowdappa, N.;
Praveen, V. B. gem-Dibromomethylarenes: A convenient substi-
tute for noncommercial aldehydes in the Knoevenagel-Doebner
reaction for the synthesis of alpha,beta-unsaturated carboxylic
acids. J. Org. Chem. 2007, 72, 9854–9856. DOI: 10.1021/
[8] Zhang, T.; Lin, W. Metal-organic frameworks for artificial
photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43,
[9] Sun, H. Y.; Li, X.; Wang, Z. R.; Sun, S. Q.; Li, C. B.; Wang, J. J.
Synthesis, crystal structure and theoretical calculations of two
Zn (II) coordination polymers based on 2,5-dihydroxytereph-
thalic acid. J. Clust. Sci. 2018, 29, 1275–1283. DOI: 10.1007/
[10] Gao, Z. J.; Yin, H.; Sun, L. Synthesis of diorganotin esters of
5-bromonicotinic acid: X-ray crystal structure of polymeric
5-bromonicotinatodiorganotin. J. Inorg. Organomet. Polym.
[11] Ma, C. L.; Sun, J. F.; Qiu, L. L.; Cui, J. C. The synthesis and
characterization of triorganotin carboxylates of 2-mercapto-
[26] Bai, Y. P.; Li, Y. G.; Wang, E. B.; Wang, X. L.; Lu, Y.; Xu, L. A
novel reduced a-Keggin type polyoxometalate coordinated to
two and
a
half copper complex moieties: [Cu(2,20-
bipy)2][PMoVI8MoV4O40fCu(2,20-bipy)g2.5]ꢀH2O. J. Mol.
[27] Spek, A. L. Structure validation in chemical crystallography.
Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. DOI: