2406
N. PraveenGanesh et al.
LETTER
2 H), 7.82–7.76 (m, 2 H), 7.48–7.40 (m, 2 H), 4.38 (dqd,
(4) (a) Chavant, P. Y.; PraveenGanesh, N. In Electronic
Encyclopaedia of Reagents for Organic Synthesis (e-EROS);
Paquette, L. A., Ed.; John Wiley and Sons: New York,
2008. (b) Woods, W. G.; Strong, P. L. J. Am. Chem. Soc.
1966, 88, 4667. (c) Fish, R. H.; Newsom, H. C. FR 1536699,
1968. (d) Fish, R. H.; Newsom, H. C. US 19670427, 1968.
(e) Kono, H.; Ito, K.; Nagai, Y. Chem. Lett. 1975, 1095.
(f) Männig, D.; Nöth, H. Angew. Chem., Int. Ed. Engl. 1985,
24, 878. (g) PraveenGanesh, N.; d’Hondt, S.; Chavant, P. Y.
J. Org. Chem. 2007, 72, 4510.
J = 11.8, 6.2, 2.9 Hz, 1 H), 1.87 (dd, J = 13.7, 2.9 Hz, 1 H),
1.62 (dd, J = 13.7, 11.8 Hz, 1 H), 1.41 (s, 3 H), 1.39 (s, 3 H),
1.38 (d, J = 6.2 Hz, 3 H) ppm. 13C NMR (75.5 MHz, CDCl3):
d = 134.8 (2×), 132.99, 130.14, 128.68, 127.67, 129.5 (v br,
CB), 126.62, 126.39, 125.44, 71.16, 65.14, 46.15, 31.38,
28.27, 23.30 ppm. 11B NMR (128 MHz, CDCl3): d = 27.10.
IR (neat): 3053, 2972, 2932, 2911, 1630, 1598, 1503, 861,
823, 765, 746, 685 cm–1. MS (EI, 70 eV): m/z (%) = 255 (26),
254 (100), 253 (28).
(5) Wilkinson, H. S.; Tanoury, G. J.; Wald, S. A.; Senanayake,
(11) (a) Baudoin, O.; Decor, A.; Cesario, M.; Gueritte, F. Synlett
2003, 2009. (b) Joncour, A.; Decor, A.; Thoret, S.; Chiaroni,
A.; Baudoin, O. Angew. Chem. Int. Ed. 2006, 45, 4149.
(c) Poriel, C.; Lachia, M.; Wilson, C.; Davies, J. R.; Moody,
C. J. J. Org. Chem. 2007, 72, 2978.
(12) (a) Combs, A.; Zhu, W.; Crawley, M.; Glass, B.; Polam, P.;
Sparks, R. B.; Modi, D.; Takvorian, A.; McLaughlin, E.;
Yue, E.; Wasserman, Z.; Bower, M.; Wei, M.; Rupar, M.;
Ala, P. J.; Reid, B. M.; Ellis, D.; Gonneville, L.; Emm, T.;
Taylor, N.; Yeleswaram, S.; Li, Y.; Wynn, R.; Burn, T. C.;
Hollis, G.; Liu, P. C. C.; Metcalf, B. J. Med. Chem. 2006, 49,
3774. (b) Mentzel, U. V.; Tanner, D.; Tonder, J. E. J. Org.
Chem. 2006, 71, 5807.
(13) For related room-temperature Suzuki couplings, see:
(a) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.;
Buchwald, S. L. J. Org. Chem. 2000, 65, 1158.
(b) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew.
Chem. Int. Ed. 2007, 46, 5359.
(14) Very recently, Murata et al. borylated aryl chlorides with
both PinBH and MPBH in the presence of excess Bu4NI:
Murata, M.; Sambommatsu, T.; Oda, T.; Watanabe, S.;
Masuda, Y. Heterocycles 2010, 80, 213.
C. H. Org. Process Res. Dev. 2002, 6, 146.
(6) (a) Couturier, M.; Tucker, J. L.; Andresen, B. M.; Dube, P.;
Negri, J. T. Org. Lett. 2001, 3, 465. (b) Couturier, M.;
Tucker, J. L.; Andresen, B. M.; Dube, P.; Brenek, S. J.;
Negri, J. T. Tetrahedron Lett. 2001, 42, 2285.
(7) Preparation of MPBH
Under a well-ventilated fume hood (H2 evolution), a 100 mL
flask equipped with a Claisen distillation head was charged
with 10% Pd/C (320 mg) and anhyd dioxane (10 mL). The
flask was flushed with nitrogen and freshly distilled 2-
methyl-2,4-pentanediol (50 mmol, 6.4 g) in dioxane (10 mL)
was added. A solution of N,N-diethylaniline-borane (60
mmol, 9.78 g) in dioxane (10 mL) was added at 20 °C over
30 min. The reaction mixture was stirred for an additional 30
min at 20 °C. Low pressure distillation gave neat MPBH (4.8
g, 75%, bp 45 °C/0.05 bar).
(8) Our attempts to use N,N-diethylaniline as the base in
subsequent borylations failed.
(9) [1,1¢-Biphenyl]-2-yl-dicyclohexylphosphine: Wolfe, J. P.;
Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 9550.
(10) Typical Procedure for the Borylation
(15) (a) Wakim, S.; Bouchard, J.; Simard, M.; Drolet, N.; Tao,
Y.; Leclerc, M. Chem. Mater. 2004, 16, 4386. (b) Ahmed,
V.; Liu, Y.; Silvestro, C.; Taylor, S. D. Bioorg. Med. Chem.
2006, 14, 8564. (c) Tam, V. K.; Liu, Q.; Tor, Y. Chem.
Commun. 2006, 2684.
(16) See Supporting Information for a detailed table of these
experiments.
(17) So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795.
(18) (a) Altemoeller, M.; Podlech, J.; Fenske, D. Eur. J. Org.
Chem. 2006, 1678. (b) Suzuki, A. Proc. Jpn. Acad. 2004,
80, 359.
An oven-dried Schlenk vessel (or a 10 mL microwaves vial)
was charged with Pd2(dba)3 (2.3 mg, 2.5 mmol, described as
0.5% in Table 1) and CyJohnPhos (3.5 mg, 10 mmol, always
2 equiv/Pd) and placed under an atmosphere of Argon.
Anhydrous dioxane (0.6 mL), the aryl halide (0.5 mmol),
Et3N (152 mg, 1.5 mmol) and MPBH (96 mg, 0.75 mmol)
were introduced (solid aryl halides were added along with
the other solid reagents). The reaction mixture was then
heated at the indicated temperature until the aryl halide has
been completely consumed as determined by gas chroma-
tography. The reaction was allowed to cool to r.t., and
filtered through a short pad of Celite (eluent Et2O). The
eluate was concentrated and the crude material purified by
flash chromatography on silica gel. Products 2a-j2,3, 3g1b and
3h1i have been previously described.
(19) The disproportionation of dialkoxyboranes yields
trialkoxyboranes and BH3. See: (a) Rose, S. H.; Shore, S. G.
Inorg. Chem. 1962, 1, 744. (b) Pasto, D. J.;
Balasubramaniyan, V.; Wojtkowski, P. W. Inorg. Chem.
1969, 8, 594. The reaction is influenced by phosphines and/
or metal species: (c) Hadebe, S. W.; Robinson, R. S. Eur. J.
Org. Chem. 2006, 4898; and references cited therein.
4,4,6-Trimethyl-2-naphthalen-2-yl[1,3,2]dioxaborinane
(2g)
1H NMR (400 MHz, CDCl3): d = 8.34 (s, 1 H), 7.89–7.85 (m,
Synlett 2010, No. 16, 2403–2406 © Thieme Stuttgart · New York