5314
Z. Lu et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5311–5314
Table 2. Potency (CIC95) (nM) against PI-resistant viral isolate
constructs in the viral spread assay
and another compound 15 shows a decent bioavailabil-
ity in both dogs and rats.
Compound NL4-3 4X Virus
Viral isolates
V-18C
K-60C
>1000
Q-60C
>1000
References and notes
Indinavir
50
400
>1000
<7.8
31.3
125
9
10
11
12
13
14
15
16
17
18
19
20
21
22
<7.8
<7.8
15.6
15.6
26.0
<7.8
7.8
<7.8
<7.8
15.6
15.6
125
<7.8
<7.8
1. (a) Vacca, J. P.; Condra, J. H. Drug Discov. Today 1997, 2,
261; (b) Kempf, D. J.; Sham, J. L. Curr. Pharm. Design
1996, 2, 225; (c) Vacca, J. P.; Dorsey, B. D.; Schlief, W. A.;
Levin, R. B.; MeDaniel, S. L.; Derke, P. L.; Zugay, J.;
Quintero, J. C.; Blanhy, O. M.; Roth, E.; Sardana, V. V.;
Schlabach, A. J.; Graham, P. I.; Condra, J. H.; Gotlib, L.;
Holloway, M. K.; Lin, J.; Chen, I.-W.; Vastag, K.; Ostovic,
D.; Anderson, P. S.; Emini, E. A.; Huff, J. R. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 4096; (d) Condra, J. H. Drug
Resist. Updates 1998, 1, 1; (e) Boden, D.; Markowits, M.
Antimicrob. Agents Chemother. 1998, 42, 2775.
<7.8
<7.8
31.3
31.3
<7.8
<7.8
<7.8
<7.8
125
<7.8
31.3
31.3
93.8
15.6
<7.8
<7.8
<7.8
125
125
375
31.3
<7.8
<7.8
<7.8
15.6
31.3
31.3
15.6
62.5
62.5
31
<7.8
7.8
<7.8
15.6
62.5
125
7.8
15.6
15.6
<7.8
<7.8
<7.8
15.6
125
62.5
31.3
62.5
62.5
250
62.5
125
2. Duffy, J. L.; Kevin, N. J.; Kirk, B. A.; Chapman, K. T.;
Schleif, W. A.; Olsen, D. B.; Stahlhut, M.; Rutkowski, C.
A.; Kuo, L. C.; Jin, L.; Lin, J. H.; Emini, E. A.; Tata, J. R.
Bioorg. Med. Chem. Lett. 2002, 12, 2423.
15.6
3. Cheng, Y.; Zhang, F.; Rano, T. A.; Lu, Z.; Chapman, K. T.;
Schleif, W. A.; Olsen, D. B.; Stahlhut, M.; Rutkowski, C. A.;
Kuo, L. C.; Jin, L.; Lin, J. H.; Emini, E. A.; Tata, J. R. Bioorg.
Med. Chem. Lett. 2002, 12, 2419; For other synthesis of
aminochromanol, see: (a) Ghosh, A. K.; Mckee, S. P.;
Sanders, W. M. Tetrahedron Lett. 1991, 32, 711; (b) Davies, I.
W.; Taylor, M.; Marcoux, J.-F.; Matty, L.; Wu, J.; Hughes,
D.; Reider, P. J. Tetrahedron Lett. 2000, 41, 8021.
4. Zhang, F.; Chapman, K. T.; Schleif, W. A.; Olsen, D. B.;
Stahlhut, M.; Rutkowski, C. A.; Kuo, L. C.; Jin, L.; Lin, J.
H.; Emini, E. A.; Tata, J. R. Bioorg. Med. Chem. Lett.
2003, 13, 2573.
5. Vacca, J. P.; Dorsey, B. D.; Schleif, W. A.; Levin, R. B.;
McDaniel, S. L.; Darke, P. L.; Zugay, J.; Quintero, J. C.;
Blahy, O. M.; Roth, E.; Sardana, V. V.; Schlabach, A. J.;
Graham, P. I.; Condra, J. H.; Gotlib, L.; Holloway, M. K.;
Lin, J.; Chen, I.-W.; Vastag, K.; Ostovic, D.; Anderson, P.
S.; Emini, E. A.; Huff, J. R. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 4096.
only a slight loss of potency against viral isolate V-18C
(17 vs 16). The analogs of 3-(5-methyl-2-furyl)-4-methyl-
pyridine moiety (18–22) are generally potent but less ac-
tive than other compounds (9–17). We noticed that the
V-18C viral isolate was one of the toughest viral isolates
and most of our compounds performed less satisfactori-
ly against it. Given their excellent antiviral activity
against mutant virus, pyridylthiophene analog 9, and
pyridylfuran analog 15 were chosen to test the oral bio-
availability in animal models. At the dose of 2 mpk po,
compound 9 showed moderate bioavailability (7.3%)
with a reasonable PK profile (Table 3). Additionally,
compound 15 had decent oral bioavailability (F = 42%
in dog and 14% in rat, see Tables 3 and 4 for PK data
in dog and rat). Unfortunately, both 9 and 15 were po-
tent (IC50 < 1lM) inhibitors of CYP 3A4, 2D6, and
2C9.
6. For the genotype of these isolates and their susceptibility to
protease inhibitors, see (a) Condra, J. H.; Holder, D. J.;
Schleif, W. A.; Blahy, O. M.; Danovich, R. M.; Gabyelski, L.
J.; Graham, D. J.; Laird, D.; Quintero, J. C.; Rhodes, A.;
Robbins, H. L.; Roth, E.; Shivaprakash, M.; Yang, T.;
Chodakewitz, J. A.; Deutsch, P. J.; Leavitt, R. Y.; Massari,
F. E.; Mellors, J. W.; Squires, K. E.; Steigbigel, R. T.;
Teppler, H.; Emini, E. A. J. Virol. 1996, 70, 8270; (b) Olsen,
D. B.; Stahlhut, M. W.; Rutkowski, C. A.; Schock, H. B.;
vanOlden, A. L.; Kuo, L. C. J. Biol. Chem. 1999, 274, 23699.
7. (a) Kim, R. M.; Rouse, E. A.; Chapman, K. T.; Schleif, W.
A.; Olsen, D. B.; Stahlhut, M.; Rutkowski, C. A.; Kuo, L.
C.; Jin, L.; Lin, J. H.; Emini, E. A.; Tata, J. R. Bioorg. Med.
Chem. Lett. 2004, 14, 4651(b) Manuscripts in preparation.
In summary, we have shown that replacement of phenyl
group at the S10 of Indinavir with various aryl heterocy-
cles along with modifications at the S3 pocket can signif-
icantly impact the inhibitory potency of the compounds
against the HIV protease enzyme. All compounds dis-
cussed above display much better antiviral activity
against mutant isolates than does indinavir. Specifically,
nearly a half dozen compounds (9, 10, and 15–17) show
substantially better potency (low nanomolar) against the
viral spread of both the wild-type virus (NL4-3) and a
number of PI-resistant variants of HIV. One of the best
compounds (9) shows moderate bioavailability in rats
Table 3. Pharmacokinetics in rats for compounds 9 and 15 (n = 4)
Compound
Dose (po dose mpk)
Cmax (lM)
AUC (lM h)
F (%)
t1/2 (min)
CL (ml/min/kg)
9
15
2
10
0.052
0.18 (sd = 0.07)
0.36
0.29 (sd = 0.12)
7.3
14
48
48
111
98
Table 4. Pharmacokinetics in dogs for compound 15 (n = 2)
Compound
Dose (po dose mpk)
10
Cmax (lM)
AUC (lM h)
F (%)
t1/2 (min)
CL (ml/min/kg)
23
15
2.1 (sd = 1.51)
0.39 (sd = 0.31)
42
60