C O M M U N I C A T I O N S
Scheme 1. Mechanistic Proposal of the Formal [3 + 2] Cyclization
profound effects on the reaction efficiency, consistent with the
mechanistic proposal that alkyne initially inserts onto carbenoid.
In fact, phenylacetylenes bearing electron-donating groups react
more readily, in general, with R-aryldiazoesters under the optimized
conditions as compared to electron-deficient alkynes. Structure of
the obtained indenes was confirmed by an X-ray crystallographic
analysis of one product (entry 6).13
Although aliphatic alkynes were inert under the conditions,
alkynes conjugated with vinyl or bearing a thienyl moiety readily
participated in the reaction (entries 7-8).14 Variation of alkoxy
groups in diazoesters did not affect the reaction efficiency (entries
9-10). Interestingly, electronic alternation on R-diazoesters showed
little effects on the reaction efficiency when compared to the alkyne
counterpart (entries 12-17). In addition, the reaction was highly
regioselective (entry 18), in that an unsymmetric aryldiazoester
reacts exclusively at the less hindered site.
between terminal alkynes and R-aryldiazoesters, thus allowing for
selective synthesis of indene derivatives under mild conditions.
Acknowledgment. This research was supported by the Korea
Research Foundation Grant (KRF-2006-312-C00587) and the
EEWS program at KAIST. We thank Dr. Junseung Lee for the
X-ray crystal structure analysis.
Interestingly, when the reaction was carried out in the presence
of a base such as potassium acetate, regioisomeric 1H-indene
compounds could be isolated, which can be attributed to the base-
mediated rearrangement of initially formed 3H-isomers (eq 1).15
Supporting Information Available: Experimental procedures,
analytical data, copies of NMR spectra of products, and a CIF file.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides;
Wiley: New York, 1998.
(2) (a) Ye, T.; McKervey, M. A. Chem. ReV. 1994, 94, 1091. (b) D´ıaz-Requejo,
M. M.; Pe´rez, P. J. J. Organomet. Chem. 2005, 690, 5441. (c) Zhang, Z.;
Wang, J. Tetrahedron 2008, 64, 6577. (d) Davies, H. M. L.; Manning,
J. R. Nature 2008, 451, 417.
To gain insight into the reaction mechanism, we performed
kinetic isotope effect studies (eq 2). Experiments revealed that this
cyclization exhibits no intermolecular kinetic isotope effects (kH/
kD ) 0.97). When phenylacetylene-d was allowed to react, the
deuterium atom was exclusively incorporated with high extent
(99%) at the 2-position of 1-phenyl-1H-benzindene-3-carboxylate
(3b, eq 3).
(3) For recent examples of the asymmetric insertions, see: (a) Doyle, M. P.;
Wang, Y.; Ghorbani, P.; Bappert, E. Org. Lett. 2005, 7, 5035. (b) Liu, B.;
Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007,
129, 5834. (c) Lee, E. C.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 12066.
(4) (a) Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510. (b)
Hughes, R. A.; Thompson, S. P.; Alcaraz, L.; Moody, C. J. J. Am. Chem.
Soc. 2005, 127, 15644. (c) Nakamura, S.; Sugano, Y.; Kikuchi, F.;
Hashimoto, S. Angew. Chem., Int. Ed. 2006, 45, 6532.
(5) (a) Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233. (b) Panne, P.;
Fox, J. M. J. Am. Chem. Soc. 2007, 129, 22.
(6) (a) Rubin, M.; Rubina, M.; Gevorgyan, V. Synthesis 2006, 1221. (b) Marek,
I.; Simaan, S.; Masarwa, A. Angew. Chem., Int. Ed. 2007, 46, 7364.
(7) Davies et al. reported a Rh-catalyzed [3 + 2] cycloaddition reaction between
vinyl ethers and R-vinyldiazoacetates, which affords cyclopentene adducts: (a)
Davies, H. M. L.; Hu, B. Tetrahedron Lett. 1992, 33, 453. (b) Davies,
H. M. L.; Kong, N.; Churchill, M. R. J. Org. Chem. 1998, 63, 6586. (c)
Davies, H. M. L.; Xiang, B.; Kong, N.; Stafford, D. G. J. Am. Chem. Soc.
2001, 123, 7461.
(8) Huffman, J. W.; Padgett, L. W. Curr. Med. Chem. 2005, 12, 1395.
(9) For a previous report on the Cu-catalyzed cyclization reaction from this
laboratory, see: Chang, S.; Lee, M.; Jung, D. Y.; Yoo, E. J.; Cho, S. H.;
Han, S. K. J. Am. Chem. Soc. 2006, 128, 12366.
(10) For a notable example of the Cu-catalyzed cyclopropenation, see: Diaz-
Requejo, M. M.; Mairena, M. A.; Belderrain, T. R.; Nicasio, M. C.;
Trofimenko, S.; Pe´rez, P. J. Chem. Commun. 2001, 1804.
On the basis of the above experiments and precedent reports,2 a
plausible mechanistic pathway is presented in Scheme 1. Electron-
rich acetylene is proposed to insert into an initially formed copper
carbenoid (I) to afford zwitterionic species II.16 Subsequent
intramolecular electrophlic attack on the aromatic ring of II leads
to isoindene IV via III upon the release of copper species.17
Isomerization of IV to a more favorable structure will provide 3H-
indene product V. When an isolated cyclopropene species 4a was
subjected to the reaction conditions of copper catalysts, the cor-
responding indene 3a was not generated, but 4a was recovered
quantitatively. Thus, the possibility of Cu-catalyzed isomerization
of arylcyclopropenes to indenes can be clearly excluded although
the rearrangement was revealed to proceed by rhodium catalysts.18
In summary, we have developed the first example of a novel
type of Cu-catalyzed intermolecular formal [3 + 2] cycloaddition
(11) (a) Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 5, 2417.
(b) Kaur, H.; Zinn, F. K.; Stevens, E. D.; Nolan, S. P. Organometallics
2004, 23, 1157.
(12) Fructos, M. R.; de Fre´mont, P.; Nolan, S. P.; D´ıaz-Requejo, M. M.; Pe´rez,
P. J. Organometallics 2006, 25, 2237.
(13) See the Supporting Information for details.
(14) Employment of 1,2-disubstituted acetylenes afforded only cyclopropene
compounds in high yields under the optimized conditions.
(15) Pettit, W. A.; Wilson, J. W. J. Am. Chem. Soc. 1977, 99, 6372.
(16) (a) Hoye, T. R.; Dinsmore, C. J. J. Am. Chem. Soc. 1991, 113, 4343. (b)
Padwa, A.; Austin, D. J.; Xu, S. L. J. Org. Chem. 1992, 57, 1330. (c)
Padwa, A.; Kinder, F. R. J. Org. Chem. 1993, 58, 21.
(17) (a) Padwa, A.; Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M. P.;
Protopopova, M. N.; Winchester, W. R.; Tran, A. J. Am. Chem. Soc. 1993,
115, 8669. (b) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew. Chem.,
Int. Ed. 2007, 46, 4757.
(18) Mu¨ller, P.; Pautex, N. HelV. Chim. Acta 1990, 73, 1233.
JA808080H
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17269