LETTER
4H-Benz[1,4]oxazin-3-ones from Anilines and 2-(2-Halophenoxy)alkanoates
605
(7) For selected examples, see: (a) Okamoto, K.; Akiyama, R.;
Kobayashi, S. J. Org. Chem. 2004, 69, 2871. (b) Wang,
Y.-Q.; Lu, S.-M.; Zhou, Y.-G. Org. Lett. 2005, 7, 3235.
(8) For a recent example, see: Cheng, K.; Wang, C.; Ding, Y.;
Song, Q.; Qi, C.; Zhang, X.-M. J. Org. Chem. 2011, 76,
9261.
Acknowledgment
Financial support by the University of Shaoxing is acknowledged
with thanks. We also thank Dr. Jinglong Wu at the Zhejiang Univer-
sity for helpful discussion.
(9) For recent examples, see: (a) Salvi, L.; Davis, N. R.; Ali, S.
Z.; Buchwald, S. L. Org. Lett. 2012, 14, 170. (b) Ueda, S.;
Su, M.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133: DOI:
10.1021/ja2102373. (c) For a review on Pd-catalyzed C–N
bond formation, see: Wolfe, J.; Wagaw, S.; Marcoux, J.-F.;
Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
(10) (a) For a recent example, see: Li, Z.; Zhang, Y.; Liu, Z.-Q.
Org. Lett. 2012, 14, 74. (b) For a recent review on C–H
functionalization via palladium catalysis, see: Engle, K. M.;
Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2011, DOI:
10.1021/ar200185g.
References and Notes
(1) For selected examples, see: (a) Minami, Y.; Yoshida, K.;
Azuma, R.; Saeki, M.; Otani, T. Tetrahedron Lett. 1993, 34,
2633. (b) Dudley, D. A.; Bunker, A. M.; Chi, L.; Cody, W.
L.; Holland, D. R.; Ignasiak, D. P.; Janiczek-Dolphin, N.;
McClanahan, T. B.; Mertz, T. E.; Narasimhan, L. S.;
Rapundalo, S. T.; Trautschold, J. A.; Van Huis, C. A.;
Edmunds, J. J. J. Med. Chem. 2000, 43, 4063. (c) Caliendo,
G.; Perissutti, E.; Santagada, V.; Fiorino, F.; Severino, B.;
d’Emmanuele di Villa Bianca, R.; Lippolis, L.; Pinto, A.;
Sorrentino, R. Bioorg. Med. Chem. 2002, 10, 2663.
(d) Rybczynski, P. J.; Zeck, R. E.; Dudash, J.; Comb, D. W.;
Burris, T. P.; Yang, M.; Osborne, M. C.; Chen, X.;
Demarest, K. T. J. Med. Chem. 2004, 47, 196.
(11) For a very recent example of enantioselective Pd-catalyzed
allylic alkylation of lactams, see: Behenna, D. C.; Liu, Y.;
Yurino, T.; Kim, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M.
Nature Chem. 2011, DOI:10.1038/nchem.1222.
(12) For selected examples, see: (a) Luo, Y.; Wu, J. Chem.
Commun. 2011, 47, 11137. (b) Luo, Y.; Pan, X.; Wu, J. Org.
Lett. 2011, 13, 1150. (c) Ren, H.; Luo, Y.; Ye, S.; Wu, J.
Org. Lett. 2011, 13, 2552. (d) Luo, Y.; Wu, J. Org. Lett.
2011, 13, 5858. (e) Cao, J.; Xu, Y.; Kong, Y.; Gui, Y.; Hu,
Z.; Wang, G.; Deng, Y.; Lai, G. Org. Lett. 2012, 14, 38.
(13) Initially, CuI was tried as the catalyst under various
conditions, but only trace amount of 1a was observed.
(14) Other 2-(2-halophenoxy)alkanoates used in this work were
prepared in excellent yields (95–98%) under the similar
conditions.
(15) For references on synthesis of 2-(2-halophenoxy)alkanoate
3, see: (a) Lu, G.; Portscheller, J. L.; Malinakova, H. C.
Organometallics 2005, 24, 945. (b) Sathisha, K. R.;
Khanum, S. A.; Chandra, J. N.; Ayisha, F.; Balaji, S.;
Marathe, G. K.; Gopal, S.; Rangappa, K. S. Bioorg. Med.
Chem. 2011, 19, 211. (c) Portscheller, J. L.; Malinakova,
H. C. Org. Lett. 2002, 4, 3679.
(16) General Procedure for the Synthesis of 4H-
Benz[1,4]oxazin-3-ones: To a 10-mL pressurized process
vial were added magnetic stir bar, Pd(OAc)2 (6.8 mg, 0.03
mmol, 10 mol%), ( )-BINAP (18.7 mg, 0.03 mmol, 10
mol%), ethyl 2-(2-halophenoxy)alkanoates (0.30 mmol),
and Cs2CO3 (195 mg, 0.6 mmol). The loaded vial was then
sealed with a rubber cap. The vial was evacuated and
backfilled with nitrogen through the cap (this procedure was
repeated several times). The anhyd and degassed toluene (3
mL) and aryl amine (0.45 mmol) were added by syringe
through the cap. The resultant mixture was heated at 90 °C
for 24 h in an oil bath, and then filtrated through Celite with
washing with EtOAc. The combined filtrate was concen-
trated under reduced pressure. The residue was purified by
column chromatography on silica gel, eluting with EtOAc
and petroleum ether (60–90 °C) to afford 1.17,18 The
structures and yields of the products are given in Tables 2
and 3.
(17) Physical and spectroscopic data for 4-naphthanyl-4H-
benz[1,4]oxazin-3-one (1n): yellow crystalline solid; mp
146–147 °C; Rf 0.55 (EtOAc–hexane, 25%). IR (film): 1682,
1370 cm–1. 1H NMR (400 MHz, CDCl3): d = 7.95 (d, J = 8.0
Hz, 1 H), 7.91 (d, J = 8.0 Hz, 1 H), 7.55–7.61 (m, 2 H), 7.39–
7.49 (m, 3 H), 7.07 (d, J = 8.0 Hz, 1 H), 6.94 (dd, J = 8.4, 8.4
Hz, 1 H), 6.70 (dd, J = 8.0, 8.0 Hz, 1 H), 6.20 (d, J = 8.0 Hz,
1 H), 4.91, 4.84 (AB q, J = 15.6, 15.6 Hz, 2 H). 13C NMR
(100 MHz, CDCl3): d = 164.6, 144.8, 134.9, 132.3, 130.7,
130.1, 129.8, 128.8, 127.55, 127.52, 126.8, 126.0, 124.2,
(e) Matsuoka, H.; Ohi, N.; Mihara, M.; Suzuki, H.;
Miyamoto, K.; Maruyama, N.; Tsuji, K.; Kato, N.; Akimoto,
T.; Takeda, Y.; Yano, K.; Kuroki, T. J. Med. Chem. 1997,
40, 105 . For recent reviews, see: (f) Sebille, S.; de Tullio,
P.; Boverie, S.; Antoine, M. H.; Lebrun, P.; Pirotte, B. Curr.
Med. Chem. 2004, 11, 1213. (g) Macias, F. A.; Marin, D.;
Oliveros-Bastidas, A.; Molinillo, J. M. G. Nat. Prod. Rep.
2009, 26, 478.
(2) For recent reviews, see: (a) Ilaš, J.; Anderluh, P. S.; Dolenc,
M. S.; Kikelj, D. Tetrahedron 2005, 61, 7325. (b) Achari,
B.; Mandal, S. B.; Dutta, P. K.; Chowdhury, K. Synlett 2004,
2449 . For selected examples, see: (c) Feng, G.; Wu, J.;
Dai, W.-M. Tetrahedron 2006, 62, 4635. (d) Hashimoto,
Y.; Ishizaki, T.; Shudo, K. Tetrahedron 1991, 47, 1837.
(e) Wu, J.; Nie, L.; Luo, J.; Dai, W.-M. Synlett 2007, 2728.
(f) Xing, X.; Wu, J.; Feng, G.; Dai, W.-M. Tetrahedron
2006, 62, 6774. (g) Dai, W.-M.; Wang, X.; Ma, C.
Tetrahedron 2005, 61, 6879. (h) Feng, G.; Wu, J.; Dai,
W.-M. Tetrahedron Lett. 2007, 48, 401. (i) Yuan, Y.; Liu,
G.; Li, L.; Wang, Z.; Wang, L. J. Comb. Chem. 2007, 9, 158.
(j) Rybczynski, P. J.; Zeck, R. E.; Combs, D. W.; Turchi, I.;
Burris, T. P.; Xu, J. Z.; Yang, M.; Demarest, K. T. Bioorg.
Med. Chem. Lett. 2003, 13, 235. (k) Matsumoto, Y.;
Uchida, A.; Nakahara, H.; Yanagisawa, I.; Shibanuma, T.;
Nohira, H. Chem. Pharm. Bull. 2000, 48, 428. (l) Banfi, L.;
Basso, A.; Giardini, L.; Riva, R.; Rocca, V.; Guanti, G. Eur.
J. Org. Chem. 2011, 100. (m) Zuo, H.; Meng, L.; Ghate, M.;
Hwang, K.-H.; Cho, Y. K.; Chandrasekhar, S.; Reddy, C. R.;
Shi, D.-S. Tetrahedron Lett. 2008, 49, 3827.
(3) (a) Touzeau, F.; Arrault, A.; Guillaumet, G.; Scalbert, E.;
Pfeiffer, B.; Rettori, M.; Renard, P.; Mérour, J.-Y. J. Med.
Chem. 2003, 46, 1962. (b) Arrault, A.; Touzeau, F.;
Guillaumet, G.; Léger, J.-M.; Jarry, C.; Mérour, J.-Y.
Tetrahedron 2002, 58, 8145. (c) Ramesh, C.; Raju, B. R.;
Kavala, V.; Kuo, C.-W.; Yao, C.-F. Tetrahedron 2011, 67,
1187. (d) For a solid-phase synthesis, see: Lee, C. L.; Chan,
K. P.; Lam, Y.; Lee, S. Y. Tetrahedron Lett. 2001, 42, 1167.
(4) Caliendo, G.; Perissutti, E.; Santagada, V.; Fiorino, F.;
Severino, B.; Cirillo, D.; d’Emmanuele di Villa Bianca, R.;
Lippolis, L.; Pinto, A.; Sorrentino, R. Eur. J. Med. Chem.
2004, 39, 815.
(5) (a) Feng, E.; Huang, H.; Zhou, Y.; Ye, D.; Jiang, H.; Liu, H.
J. Org. Chem. 2009, 74, 2846. (b) Chen, D.; Shen, G.; Bao,
W. Org. Biomol. Chem. 2009, 7, 4067.
(6) Ylijoki, K. E. O.; Kundig, E. P. Chem. Commun. 2011, 47,
10608.
© Thieme Stuttgart · New York
Synlett 2012, 23, 601–606