P. Shen et al. / Organic Electronics 12 (2011) 1992–2002
2001
(c) A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev.
110 (2010) 6595.
[4] (a) K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S.
Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 107
(2003) 597;
electron lifetime. Fig. 8 shows the Bode plot for DSSCs
based on HB, HP, HF, and HT. Two peaks in Fig. 8 located
at the high-frequency (right) and middle-frequency (left)
respectively correspond to the small semicircle (left) and
large semicircle (right) in the Nyquist plots (Fig. 7). The re-
ciprocal of the peak frequency for the middle-frequency
peak is regarded as the electron lifetime since it represents
the charge transfer process at the TiO2/dye/electrolyte
interface. It is evident that the electron lifetime for the
DSSC based on HT and HF is smaller than those for DSSCs
based on HP and HB, thereby explaining the Voc increase
from HT and HF to HP and HB.
(b) Z. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, Adv.
Mater. 19 (2007) 1138;
(c) Z. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, J.
Phys. Chem. C 111 (2007) 7224.
[5] (a) S. Ito, M. Zakeeruddin, R. Hummphrey-Baker, P. Liska, R. Charvet,
P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida,
M. Grätzel, Adv. Mater. 18 (2006) 1202;
S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P.
Pechy, M. Grätzel, Chem. Commun. (2008) 5194.
[6] (a) D.P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt,
L. Sun, Chem. Commun. (2006) 2245;
(b) S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.H. Lee, W.
Lee, J. Park, K. Kim, N.G. Park, C. Kim, Chem. Commun. (2007)
4887;
4. Conclusions
(c) D.P. Hagberg, T. Marinado, K.M. Karlsson, K. Nonomura, P. Qin,
G. Boschloo, T. Brinck, A. Hagfeldt, L. Sun, J. Org. Chem. 72 (2007)
9550;
(d) W. Xu, B. Peng, J. Chen, M. Liang, F. Cai, J. Phys. Chem. C 112
(2008) 874;
(e) G. Zhang, Y. Bai, R. Li, D. Shi, S. Wenger, S.M. Zakeeruddin, M.
Grätzel, P. Wang, Energy Environ. Sci. 2 (2009) 92;
(f) L.-Y. Lin, C.-H. Tsai, K.-T. Wong, T.-W. Huang, L. Hsieh, S.-H. Liu,
H.-W. Lin, C.-C. Wu, S.-H. Chou, S.-H. Chen, A.-I. Tsai, J. Org. Chem.
75 (2010) 4778;
In summary, we have designed and synthesized a series
of novel hydrazone-based D–
p–A dyes (HB, HP, HF, and
HT), by employing different aromatic
p-conjugated bridges
such as benzene, pyrrole, furan, and thiophene in combina-
tion with the hydrophobic N,N-diphenylhydrazone donor
and the hydrophilic cyanoacrylic acid acceptor. The effects
of the aromatic p-conjugated bridges on the photophysical,
electrochemical and photovoltaic properties of these dyes
were extensively investigated. It was found that the absorp-
tion spectra and HOMO and LUMO energy levels can be
conveniently tuned by alternating the aromatic bridges.
Molecular orbital calculations showed that the HOMO–
LUMO excitation could readily move the electron
distribution from the N,N-diphenylhydrazone donor to the
(g) P. Shen, Y. Liu, X. Huang, B. Zhao, N. Xiang, J. Fei, L. Liu, X.
Wang, S. Tan, Dyes Pigm. 83 (2009) 187;
(h) H. Chen, H. Huang, X. Huang, John N. Clifford, A. Forneli, E.
Palomares, X. Zheng, L. Zheng, X. Wang, P. Shen, B. Zhao, S. Tan, J.
Phys. Chem. C 114 (2010) 3280;
(i) W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. S Wang, H. Tian,
Adv. Funct. Mater. 21 (2011) 756.
[7] (a) S. Kim, J.K. Lee, S.O. Kang, J. Ko, J.H. Yum, S. Fantacci, F. DeAngelis,
D. Dicenso, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 128
(2006) 16701;
cyanoacrylic acid acceptor via aromatic
p-conjugated
(c) I. Jung, J.K. Lee, K.H. Song, K. Song, S.O. Kang, J. Ko, J. Org. Chem.
72 (2007) 3652;
H. Choi, J.K. Lee, K. Song, S.O. Kang, J. Ko, Tetrahedron 63 (2007)
3115;
(d) H. Choi, C. Baik, S.O. Kang, J. Ko, M.S. Kang, M.K. Nazeeruddin, M.
Grätzel, Angew. Chem. Int. Ed. 47 (2008) 327.
bridges. We have also studied the influence of aromatic
bridges on photovoltages through the electrochemical
impedance experiments and achieved a preliminary conclu-
sion that the high Voc of HP based DSSC resulted from the rel-
atively small charge recombination rate and long electron
lifetime due to the additional hydrophobic alkyl chain of
pyrrole bridge. DSSCs based on these dyes have achieved
5.11–7.74% PCEs when CDCA (1 mM) was added into the
dye bath as a coadsorbent. For the first time we have proved
that N,N-diphenylhydrazone and N-(2-ethylhexyl)-substi-
tuted pyrrole units can be employed as the effective and
[8] (a) H.N. Tian, X.C. Yang, R.K. Chen, Y.Z. Pan, L. Li, A. Hagfeldt, L. Sun,
Chem. Commun. (2007) 3741;
(b) D. Cao, J. Peng, Y. Hong, X. Fang, L. Wang, H. Meier, Org. Lett. 13
(2011) 1610.
[9] (a) R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt, L. Sun, Chem.
Mater. 19 (2007) 4007;
(b) R. Chen, X. Yang, H. Tian, L. Sun, J. Photochem. Photobiol. A Chem.
189 (2007) 295.
[10] (a) N. Koumura, Z.S. Wang, S. Mori, M. Miyashita, E. Suzuki, K. Hara,
J. Am. Chem. Soc. 128 (2006) 14256;
promising donor and
D– –A dyes, which expands the selection scope of building
blocks for further dye design. Further structural modifica-
tion of the -conjugated bridge based on the series sensitiz-
p-conjugated bridge, respectively in
[b] D. Kim, J.K. Lee, S.O. Kang, J. Ko, Tetrahedron 63 (2007) 1913;
(c) C. Zafer, B. Gultekin, C. Ozsoy, C. Tozlu, B. Aydin, S. Icli, Sol. Energ.
Mater. Sol. Cells 94 (2010) 655.
p
p
[11] (a) S.-L. Wu, H.-P. Lu, H.-Ti.Yu, S.-H. Chuang, C.-L. Chiu, C.-W. Lee,
E.W.-G. Diau, C.-Y. Yeh, Energy Environ. Sci. 3 (2010) 949;
(b) Y. Liu, N. Xiang, X. Feng, P. Shen, W. Zhou, C. Weng, B. Zhao, S.
Tan, Chem. Commun. (2009) 2499;
ers to improve the photovoltaic performance is just ongoing.
Acknowledgements
(c) C.-P. Hsieh, H.-P. Lu, C.-L. Chiu, C.-W. Lee, S.-H. Chuang, C.-L. Mai,
W.-N. Yen, S.-J. Hsu, Eric W.-G. Diau, C.-Y. Yeh, J. Mater. Chem. 20
(2010) 1127;
This work was supported by the General Program of the
Education Department of Hunan Province (No. 09C946),
National Natural Science Foundation of China (No.
50973092, 21004050, 51003089), and National Natural
Science Foundation of Hunan Province (No. 10JJ4007).
(d) T. Bessho, S.M. Zakeeruddin, C.-Y. Yeh, Eric W.-G. Diau, M.
Grätzel, Angew. Chem. Int. Ed. 49 (2010) 6646.
[12] H.-Y. Yang, Y.-S. Yen, Y.-C. Hsu, H.-H. Chou, J.T. Lin, Org. Lett. 12
(2010) 16.
[13] (a) Y.-S. Yen, Y.-C. Hsu, J.T. Lin, C.W. Chang, C.-P. Hsu, D. Yin, J. Phys.
Chem. C 112 (2008) 12557;
(b) J.A. Mikroyannidis, M.S. Roy, G.D. Sharma, J. Power Sources 19
(2010) 5391.
References
[14] (a) G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, Chem.
Commun. (2009) 2198;
[1] M. Grätzel, Nature 414 (2001) 338.
[2] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, ACS Nano 4
(2010) 6032.
(b) W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan,
P. Wang, Chem. Mater. 22 (2010) 1915.
[3] Y. Ooyama, Y. Harima, Eur. J. Org. Chem. (2009) 2903;
(b) A. Mishra, M.K.R. Fischer, P. Büerle, Angew. Chem. Int. Ed. 48
(2009) 2474;
[15] (a) W.-H. Liu, I.-C. Wu, C.-H. Lai, P.-T. Chou, Y.-T. Li, C.-L. Chen, Y.-Y.
Hsu, Y. Chi, Chem. Commun. (2008) 5152;