5
2016, 18, 2228-2231; (c) Bernt, C. M.; Bottari, G.; Barrett, J.
compatible and sustainable alternative with greater merits and
wider applicability compared to many of the earlier methods
reported for the construction of bis-(indolyl)methane framework.
A.; Scott, S. L.; Barta, K.; Ford, P. C. Catal. Sci. Technol. 2016,
6, 2984-2994; (d) Srivastava, A.; Agarwal, A.; Gupta, S. K.; Jain,
N. RSC Adv. 2016, 6, 23008-23011.
9. (a) Mendes, S. R.; Thurow, S.; Fortes, M. P.; Penteado, F.;
Lenardao, E. J.; Alves, D.; Perin, G.; Jacob, R. G. Tetrahedron
Lett. 2012, 53, 5402-5406; (b) Esmaielpour, M.; Akhlaghinia, B.;
Jahanshahi, R. J. Chem. Sci. 2017, 129, 313-328; (c) Shaikh, K.
A.; Mohammed, Z. A.; Patel, N. T.; Syed, S. A.; Patil, V. A. Res.
J. Pharm. Biol. Chem. Sci. 2010, 1, 730-736; (d) Sadaphal, S. A.;
Shelke, K. F.; Sonar, S. S.; Madje, B. R.; Shingare, M. S. Bulletin of
the Catalysis Scoeity of India, 2008, 7, 111-114; (e) Swetha, A.;
Babu, B. M.; Meshram, H. M. Tetrahedron Lett. 2015, 56, 1775-
1779; (f) Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Liu, W.; Ma, B.;
Bi, S.; Zhan, H.; Chen, X. Green Chem. 2019, 21, 3542-3546; (g)
Selvakumar, K.; Shanmugaprabha, T.; Annapoorani, R. Synth.
Commun. 2017, 47, 913-927; (h) Tran, P. H.; Nguyen, X. T. T.;
Chau, D. K. N. Asian J. Org. Chem. 2018, 7, 232-239; (i) Dabiri,
M.; Salehi, P.; Baghbanzadeh, M.; Shakouri, M.; Otokesh, S.;
Ekrami, T.; Doosti, R. J. Iran. Chem. Soc. 2007, 4, 393-401; (j)
Vaghei, R. G.; Veisi, H. J. Braz. Chem. Soc. 2010, 21, 193-201;
(k) Sujatha, K.; Perumal, P. T.; Muralidharan, D.; Rajendaran, M.
Indian. J. Chem. 2009, 48(B), 267-272; (l) Hasaninejad, A.;
Mohammadizadeh, M.R.; Babamiri, S. F. 2nd International
IUPAC Conference on Green Chemistry, Russia, 2008; 14-19; (m)
Patil, V. D.; Dere, G. B.; Rege, P. A.; Patil, J. J. Syn. Commun.,
2011, 41, 736-747; (n) Gao, G.; Han, Y.; Zhang, Z. H.
ChemistrySelect. 2017, 2, 11561-11564; (o) Xu, D. Z.; Tong, J.;
Yang, C. Synthesis, 2016, 48, 3559-3566; (p) Sun, D.; Jiang, G.;
Xie, Z.; Le, Z. Chin. J. Chem. 2015, 33, 409-412; (q) Fu, Y.; Lu,
Z.; Fang, K.; He, X.; Xu, H.; Hu, Y. RSC Adv., 2020, 10, 10848-
10853.
Conclusion
Catalytic efficiency of β-cyclodextrin hydrate has been
investigated towards the synthesis of bis-(indol-3-yl)-methanes
through the Friedel-Crafts alkylation reaction of indoles with
aryl, heteroaryl as well as alkyl aldehydes under mild reaction
condition. This newly developed atom-economical protocol
shows good chemoselectivity which has been substantiated
through intermolecular as well as intramolecular competition
experiments. Practical synthetic utility was also demonstrated by
gram scale applicability. The salient features of the present
method are procedural simplicity, excellent chemoselectivity,
tolerance of various sensitive moieties during the reaction, wide
substrate scope as well as eco-compatibility in terms of using
water as the most innocuous reaction medium, the ready
accessibility and recyclability of the catalyst of lower toxicity
compared to most of the existing ones and minimization of waste
formation owing to high atom economy and small E-factor.
Acknowledgments
Financial assistance from RUSA 2-Programme and UGC-CAS-II
programme in Chemistry at Jadavpur University are gratefully
acknowledged. S. N. Thanks DST, INSPIRE, New Delhi for
senior research fellowship. Thanks to Mr. N. Dutta of IACS and
Mr. R. Biswas of JU for necessary assistance.
10. (a) Li, D.; Wang, J.; Chen, F.; Jing, H. RSC Adv. 2017, 7, 4237-
4242; (b) Kothandapani, J.; Ganesan, A.; Vairaprakash, P.;
Ganesan, S. S. Tetrahedron Lett. 2015, 56, 2238-2242; (c)
Bahuguna, A.; Kumar, S.; Krishnan, V. ChemistrySelect. 2018, 3,
314-320; (d) Beltra, J.; Gimeno, M. C.; Herrera, R. P. Beilstein J.
Org. Chem. 2014, 10, 2206-2214; (e) Mohapatra, S. S.; Wilson, Z.
E.; Roy, S.; Ley, S. V. Tetrahedron, 2017, 73, 1812-1819; (f)
References and notes
1. Wang, Q.; Chen, Y.; Liu, Y. Polym, Chem-UK, 2013, 4, 4192.
2. Usha, M. G.; Wittebort, R. J. J. Mol. Biol. 1989, 208, 669-678.
3. Anagnostopoulou, A.; Apekis, L.; Tsoukaris, G. IEEE Trans.
Electrical Insulation, 1992, 27, 801.
Bahuguna, A.;
Kumar, S.; Sharma, V.; Reddy, K. L.;
Bhattacharyya, K.; Ravikumar, P. C.; Krishnan, V. ACS
Sustainable Chem. Eng. 2017, 5, 8551-8567; (g) Guo, S.; Fang,
Z.; Zhou, B.; Hua, J.; Dai, Z.; Yang, Z.; Liu, C.; He, W.; Guo, K.
Org. Chem. Front. 2019, 6, 627-631; (h) Mendes, S. R.; Thurow,
S.; Penteado, F.; Silva, M. S. da.; Gariani, R. A.; Perin, G.;
Lenardao, E. J. Green Chem. 2015, 17, 4334-4339; (i) Gorantla,
N. S.; Reddy, P. G.; Abdul Shakoor, S. M.; Mandal, R.; Roy, S.;
Mondal, K. C. ChemistrySelect. 2019, 4, 7722-7727; (j) Xueling,
M.; Sanzhong, L.; Jiaqi, H.; Cheng, J. P.; Tetrahedron Lett. 2004,
45, 4567-4570; (k) Huo, C.; Sun, C.; Wang, C.; Jia, X.; Chang, W.
ACS Sustainable Chem. Eng. 2013, 1, 549-553.
4. (a) Madhav, B.; Murthy, S. N.; Kumar, B. A.; Ramesh, K.;
Nageswar, Y. V. D.; Tetrahedron Lett. 2012, 53, 3835-3838; (b)
Noel, S.; Leger, B.; Ponchel, A.; Philippot, K.; Nowicki, A. D.;
Roucoux, A.; Monflier, E. Catal. Today. 2014, 235, 20-32; (c)
Hapiot, F.; Bricout, H.; Menuel, S.; Tilloy, S.; Monflier, E. Catal.
Sci. Technol. 2014, 4, 1899-1908; (d) Kumar, A.; Shukla, R. D.
Green Chem. 2015, 17, 848-851; (e) Shinde, V. V.; Jeong, D.; Joo,
S. W.; Cho, E.; Jung, S. Catal. Commun. 2018, 103, 83-87.
5. Ghatak, A.; Khan, S.; Bhar, S. Adv. Synth. Catal. 2016, 358, 435-
443.
11. (a) Rajeswaran, W. G.; Labroo, R. B.; Cohen, L. A. J. Org. Chem.
1999, 64, 1369-1371; (b) Yadav, J. S.; Subba Reddy, B. V.;
Yadav, N. N.; Gupta, M. K. Tetrahedron Lett. 2008, 49, 2815-
2819; (c) Srihari, P.; Singh, V. K.; Bhunia, D. C.; Yadav, J. S.
Tetrahedron Lett. 2009, 50, 3763-3766.
12. Fukuyama, T.; Chen, X.; Ge Peng. J. Am. Chem. Soc. 1994, 116,
3127-3128.
13. (a) Usha, M. G.; Wittebort, R. J. J. Am. Chem. Soc. 1992, 114,
1541-1548; (b) Sabadini, E.; Cosgrove, T.; Egidio, F. C.
Carbohydr. Res. 2006, 341, 270-274.
6. (a) Friedel, C.; Crafts, J. M. J. Chem. Soc. 1877, 32, 725-791; (b)
Okauchi, T.; Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.;
Yoshino, H. Org. Lett. 2000, 2, 1485-1487; (c) Ottoni, O.; Neder,
A. D. V. F.; Dias, A. K. B.; Ruz, R. P. A. C; Aquino, L. B. Org.
Lett. 2001, 3, 1005-1007; (d) Wynne, J. H.; Stalick, W. M. J. Org.
Chem. 2002, 67, 5850-5853; (e) Mertins, K.; Iovel, I.; Kischel, J.;
Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2004, 44, 238-242; (f)
Jia, Y. X.; Xie, J. H.; Duan, H. F.; Wang, L. X.; Lin Zhou, Q. Org.
Lett. 2006, 8, 1621-1624; (g) Wang, Y. Q.; Song, J.; Hong, R.;
Hongming, Li.; Li Deng. J. Am. Chem. Soc. 2006, 128, 8156-
8157; (h) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7,
1501-1507; (i) Downey, C. W.; Poff, C. D.; Nizinski, A. N. J.
Org. Chem. 2015, 20, 10364-10369; (j) Deng, X. F.; Wang, Y.
W.; Zhang, S.; Li, L.; Li, G. X.; Zhao, G.; Tang, Z. Chem.
Commun., 2020, 56, 2499-2502.
15. (a) Ehrlich, P. Med. Woche. 1901, 151; (b) Seyedeh, F. H.;
Toktam, Z.; Zahra, N. Bull. Korean Chem. Soc. 2013, 34, 117.
7. Garbe, T. R.; Kobayashi, M.; Shimizu, N. J. Nat. Prod. 2000, 63,
596-598.
8. (a) Grosso, C.; Cardoso, A. L.; Lemos, A.; Varela, J.; Rodrigues,
M. J.; Custodio, L.; Barreira, L.; Melo, T. Eur. J. Med. Chem.
2015, 93, 9-15; (b) Li, D.; Wu, T.; Liang, K.; Xia, C. Org. Lett.
Supplementary Material General experimental procedure and
the characterization data of the final compounds are available as
supporting information.