Organic Letters
Letter
(2) (a) Notz, W.; Tanaka, F.; Barbas, C. F., III Acc. Chem. Res. 2004,
37, 580. (b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem.
Rev. 2007, 107, 5471.
(3) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243
and references cited therein.
(4) For selected decarboxylative coupling reactions of amino acids:
(a) Bi, H. P.; Zhao, L.; Liang, Y. M.; Li, C. J. Angew. Chem., Int. Ed.
2009, 48, 792. (b) Zuo, Z. W.; MacMillan, D. W. C. J. Am. Chem. Soc.
2014, 136, 5257. (c) Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2010, 132,
1798.
(5) For selected examples of some alkaloids which were
biosynthesized through catabolism and reconstruction behavior of
natural amino acids, please see: (a) Turner, N. J. Chem. Rev. 2011, 111,
4073. (b) Dagorn, F.; Yan, L. H.; Gravel, E.; Leblanc, K.; Maciuk, A.;
Poupon, E. Tetrahedron Lett. 2011, 52, 3523. (c) Ni, L. J.; Li, Z. Y.;
Wu, F.; Xu, J. Y.; Wu, X. M.; Kong, L. Y.; Yao, H. Q. Tetrahedron Lett.
2012, 53, 1271. (d) De Laurentis, W.; Khim, L.; Anderson, J. L. R.;
Adam, A.; Phillips, R. S.; Chapman, S. K.; van Pee, K. H.; Naismith, J.
H. Biochemistry 2007, 46, 12393. (e) Chan, S. T. S.; Pearce, A. N.;
Page, M. J.; Kaiser, M.; Copp, B. R. J. Nat. Prod. 2011, 74, 1972.
(6) (a) Burns, N. Z.; Baran, P. S. Angew. Chem., Int. Ed. 2008, 47,
205. (b) Burns, N. Z.; Jessing, M.; Baran, P. S. Tetrahedron 2009, 65,
6600.
(7) Chichibabin, A. E.; Zeide, O. A. J. Russ. Phys. Chem. Soc. 1914, 46,
1216.
(8) Jones, G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A.
R., Rees, C. W., Scriven, E. F. V., McKillop, A., Eds.; Pergamon:
Oxford, 1996; Vol. 5, p 167.
(9) (a) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
(b) Roth, H. J.; Kleemann, A. Pharmaceutical Chemistry (Drug
Synthesis); John-Wiley & Sons, Ltd.: New York, 1988; Vol. 1, pp
88−114. (c) Sasabe, H.; Kido. Chem. Mater. 2011, 23, 621.
(10) For selected examples see: (a) Li, Z. Y.; Huang, X. Q.; Chen, F.;
Zhang, C.; Wang, X. Y.; Jiao, N. Org. Lett. 2015, 17, 584. (b) Khanal,
H. D.; Lee, Y. R. Chem. Commun. 2015, 51, 9467. (c) Shen, L.; Cao, S.;
Wu, J.; Zhang, J.; Li, H.; Liu, N.; Qian, X. Green Chem. 2009, 11, 1414.
(11) For selected reviews see: Gulevich, A. V.; Dudnik, A. S.;
Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084. (b) Zeni,
G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (c) Varela, J. A.; Saa, C.
Chem. Rev. 2003, 103, 3787.
reaction 1, the acetophenone substrate would be initially
converted to 2-iodo-1-phenylethan-1-one, which would be
trapped by pyridine to afford 1-(2-oxo-2-phenylethyl)pyridin-1-
ium iodide (A). At the same time, I2 would trigger the
sequential decarboxylation and oxidation reactions of the amino
acid substrate to generate the corresponding imine species,
which would undergo a rapid hydrolysis reaction to give
ammonia and the corresponding aldehyde. The ammonia,
aldehyde, A, and residual acetophenone would converge via a
Krohnke type pyridine synthesis17 to reconstruct the desired
̈
2,6-disubstituted or 2,4,6-trisubstituted pyridine product in the
presence of I2. A similar mechanism would also occur for
reaction 2 (with phenylalanine as an example). Followed by
decarboxylation of carboxyl group, I2 promoted the oxidation of
the C−N bond to afford the unstable intermediate 2-
phenylethan-1-imine (B1). After hydrolysis, phenylalanine
catabolized to corresponding ammonia and 2-phenylacetalde-
hyde (B2). The combination of 3 equiv of B3 with 1 equiv of
ammonia (or 2 equiv of B3 with 1 equiv of B1) would allow for
the construction of the pyridine core in situ via a Chichibabin-
type pyridine synthesis. Finally, the 3,5-disubstituted pyridine
product could be obtained by a debenzylation/aromatizition
process.10a This process would allow for the regeneration of a
catalytic equivalent of I2 in the presence of DMSO.
In summary, we have developed a novel method for the
chemoselective synthesis of 2,6-disubstituted, 2,4,6-trisubsti-
tuted, and 3,5-disubstituted pyridines from natural amino acids.
These transformations featured a catabolism and reconstruction
reaction model including an unprecedented I2-mediated
oxidative cleavage of unreactive C−N bonds. In addition to
the inherent value offered by this reaction as a biomimetic
process, one of the main advantages of this environmentally
benign method is that it avoids the direct use of toxic aldehydes
and harsh conditions. Moreover, the transformation of biomass
materials into synthetically valuable scaffolds is ecologically and
economically beneficial.
(12) (a) Xi, L. Y.; Zhang, R. Y.; Liang, S.; Chen, S. Y.; Yu, X. Q. Org.
Lett. 2014, 16, 5269. (b) Wu, K.; Huang, Z. l.; Liu, C.; Zhang, H.; Lei,
A. W. Chem. Commun. 2015, 51, 2286.
(13) Extensive research reported that C−N bonds are inert; see:
(a) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129,
6098. (b) Zhao, X. H.; Liu, D. L.; Guo, H.; Liu, Y. G.; Zhang, W. B. J.
Am. Chem. Soc. 2011, 133, 19354. (c) Kalutharage, N.; Yi, C. S. Angew.
Chem., Int. Ed. 2013, 52, 13651.
(14) Wang, Q.; Wan, C. F.; Gu, Y.; Zhang, J. T.; Gao, L. F.; Wang, Z.
Y. Green Chem. 2011, 13, 578.
(15) Heating an ammonia saturated solution of phenylacetaldehyde
in ethanol to 235 °C at 1150 psi for 6 h yields 13% 3,5-
diphenylpyridine: Eliel, E. L.; McBride, R. T.; Kaufmann, S. J. Am.
Chem. Soc. 1953, 75, 4291.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures, product characterizations,
crystallographic data, and copies of the 1H and 13C
Crystallographic data for 3h (CIF)
AUTHOR INFORMATION
(16) (a) Chuang, T. H.; Chen, Y. C.; Pola, S. J. Org. Chem. 2010, 75,
6625. (b) Tagat, J. R.; McCombie, S. W.; Barton, B. E.; Jackson, J.;
Shortall, J. Bioorg. Med. Chem. Lett. 1995, 5, 2143.
■
Corresponding Author
(17) Zecher, W.; Krohnke, F. Chem. Ber. 1961, 94, 690.
̈
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (Grants 21272085 and 21472056) for financial support.
REFERENCES
(1) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
■
D
Org. Lett. XXXX, XXX, XXX−XXX