Organic Letters
Letter
(11) Bi, H.-P.; Guo, L.-N.; Duan, X.-H.; Gou, F.-R.; Huang, S.-H.;
Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2007, 9, 397−400.
(12) (a) Duan, X.-H.; Guo, L.-N.; Bi, H.-P.; Liu, X.-Y.; Liang, Y.-M.
Org. Lett. 2006, 8, 3053−3056. (b) Guo, L.-N.; Duan, X.-H.; Bi, H.-P.;
Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2006, 71, 3325−3327.
(13) Padwa, A.; Kassir, J. M.; Semones, M. A.; Weingarten, M. D. J.
Org. Chem. 1995, 60, 53−62.
(14) Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287−1289.
(15) The E- and Z-geometries of the isomeric compounds 4, 6, and 7
were assigned based on the NOESY analysis. NOESY spectra of
compounds E-4a, Z-4a, E-4b, Z-4b, Z-4d, Z-4e, Z-4f, Z-6b, and Z-6f
are provided in the Supporting Information. The geometries of the
other indanes and indanones were determined based on analogy to the
above-mentioned compounds. The most characteristic peak is the
signal in the 1H NMR spectrum for the proton at the 7-position of the
indane/indanone. For the Z-isomers, this signal appears in the regular
aromatic region; for the E-isomers, it appears in the range δ 8.5−9.5
ppm. In TLC analyses, the Z-isomers were, consistently, more polar
than their E-counterparts.
(16) If all the reagents are added at the beginning of the reaction, the
mixture turns black and neither the Michael nor the Heck reaction
occurs.
(17) (a) Sriramurthy, V.; Barcan, G. A.; Kwon, O. J. Am. Chem. Soc.
2007, 129, 12928−12929. (b) Sriramurthy, V.; Kwon, O. Org. Lett.
2010, 12, 1084−1087. (c) Fan, Y. C.; Kwon, O. Molecules 2011, 16,
3802−3825.
(18) Abitz, I. W.; Morf, D. F.; Brauns, H.-A. German Patent 25 43
870, 1975.
ASSOCIATED CONTENT
■
S
* Supporting Information
Procedure details and NMR spectra. This material is available
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the NIH (R01GM071779) for financial support.
REFERENCES
(1) Liebig, J. Justus Liebigs Ann. Chem. 1860, 113, 246−247.
■
(2) Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588−11619.
(3) Reviews of phosphine catalysis: (a) Lu, X.; Zhang, C.; Xu, Z. Acc.
Chem. Res. 2001, 34, 535−544. (b) Valentine, D. H., Jr.; Hillhouse, J.
H. Synthesis 2003, 317−334. (c) Methot, J. L.; Roush, W. R. Adv.
Synth. Catal. 2004, 346, 1035−1050. (d) Lu, X.; Du, Y.; Lu, C. Pure
Appl. Chem. 2005, 77, 1985−1990. (e) Nair, V.; Menon, R. S.;
Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res. 2006, 39,
520−530. (f) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37,
1140−1152. (g) Kwong, C. K.-W.; Fu, M. Y.; Lam, C. S.-K.; Toy, P. H.
Synthesis 2008, 2307−2317. (h) Denmark, S. E.; Beutner, G. L. Angew.
Chem., Int. Ed. 2008, 47, 1560−1638. (i) Ye, L.-W.; Zhou, J.; Tang, Y.
Chem. Soc. Rev. 2008, 37, 1140−1152. (j) Aroyan, C. E.; Dermenci, A.;
Miller, S. J. Tetrahedron 2009, 65, 4069−4084. (k) Kumara Swamy, K.
C.; Bhuvan Kumar, N. N.; Balaraman, E.; Pavan Kumar, K. V. P. Chem.
Rev. 2009, 109, 2551−2651. (l) Cowen, B. J.; Miller, S. J. Chem. Soc.
Rev. 2009, 38, 3102−3116. (m) Marinetti, A.; Voituriez, A. Synlett
2010, 174−194. (n) Kolesinska, B. Cent. Eur. J. Chem. 2010, 1147−
1171. (o) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005−1018.
(p) Pinho e Melo, T. M. V. D. Monatsh. Chem. 2011, 142, 681−697.
(q) Lalli, C.; Brioche, J.; Bernadat, G.; Masson, G. Curr. Org. Chem.
2011, 15, 4108−4127. (r) Wang, S.-X.; Han, X.; Zhong, F.; Wang, Y.;
́
Lu, Y. Synlett 2011, 2766−2778. (s) Lopez, F.; Mascarenas, J. L.
̃
Chem.Eur. J. 2011, 17, 418−428. (t) Zhao, Q.-Y.; Lian, Z.; Wei, Y.;
Shi, M. Chem. Commun. 2012, 48, 1724−1732. (u) Fan, Y. C.; Kwon,
O. Phosphine Catalysis. In Science of Synthesis; List, B., Ed.;
Asymmetric Organocatalysis, Vol. 1, Lewis Base and Acid Catalysts;
Georg Thieme: Stuttgart, 2012; pp 723−782. (v) Wang, Y.; Pan, J.;
Chen, Z.; Sun, X.; Wang, Z. Mini-Rev. Med. Chem. 2013, 13, 836−844.
(w) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927−2940.
(x) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. Beilstein J. Org. Chem. 2014,
10, 2089−2121.
(4) Fan, Y. C.; Kwon, O. Org. Lett. 2012, 14, 3264−3267.
(5) Patel, A.; Giles, D.; Basavarajaswamy, G.; Sreedhar, C.; Patel, A.
Med. Chem. Res. 2012, 21, 4403−4411.
(6) Saxena, H. O.; Faridi, U.; Srivastava, S.; Kumar, J. K.; Darokar, M.
P.; Luqman, S.; Chanotiya, C. S.; Krishna, V.; Negi, A. S.; Khanuja, S.
P. S. Bioorg. Med. Chem. Lett. 2008, 18, 3914−3918.
́
(7) (a) Finkielsztein, L. M.; Castro, E. F.; Fabian, L. E.; Moltrasio, G.
Y.; Campos, R. H.; Cavallaro, L. V.; Moglioni, A. G. Eur. J. Med. Chem.
2008, 43, 1767−1773. (b) Hu, H.; Hollinshead, S. P.; Hall, S. E.;
Kalter, K.; Ballas, L. M. Bioorg. Med. Chem. Lett. 1996, 6, 973−978.
(8) Meng, D.; Parker, D. L., Jr. Tetrahedron Lett. 2002, 43, 9035−
9038.
(9) Yamanaka, M.; Hoshino, M.; Katoh, T.; Mori, K.; Akiyama, T.
Eur. J. Org. Chem. 2012, 4508−4514.
(10) Wilkening, R. R.; Ratcliffe, R. W.; Fried, A. K.; Meng, D.; Sun,
W.; Colwell, L.; Lambert, S.; Greenlee, M.; Nilsson, S.; Thorsell, A.;
Mojena, M.; Tudela, C.; Frisch, K.; Chan, W.; Birzin, E. T.; Rohrer, S.
P.; Hammond, M. L. Bioorg. Med. Chem. Lett. 2006, 16, 3896−3901.
2061
Org. Lett. 2015, 17, 2058−2061