matic DKR of amines. In most cases, racemization was based
on metal-catalyzed reversible dehydrogenation of the amine into
the corresponding imine. Our approach was different since the
racemization process relied on reversible hydrogen atom
abstraction at the stereocenter (directly adjacent to the reactive
amine moiety) by sulfanyl radical.5,6 The known examples of
(S)-selective chemoenzymatic DKRs involving hydrolases refer
exclusively to alcohols.7 We report herein chemoenzymatic
conversion of aliphatic amines into the corresponding (S)-amides
through a one-pot three-step sequence (Scheme 1).
En Route to (S)-Selective Chemoenzymatic
Dynamic Kinetic Resolution of Aliphatic Amines.
One-Pot KR/Racemization/KR Sequence Leading
to (S)-Amides
Lahssen El Blidi,† Malek Nechab,†,‡ Nicolas Vanthuyne,‡
Ste´phane Gastaldi,*,† Miche`le P. Bertrand,*,† and
Ge´rard Gil*,‡
Equipe Chimie Mole´culaire Organique, LCP UMR 6264,
Boite 562, UniVersite´ Paul Ce´zanne, Faculte´ des Sciences St
Je´roˆme, AVenue Escadrille Normandie-Niemen, 13397
Marseille Cedex 20, France, and Chirosciences, ISM2, UMR
6263, UniVersite´ Paul Ce´zanne, Faculte´ des Sciences St
Je´roˆme, AVenue Escadrille Normandie-Niemen, 13397
Marseille Cedex 20, France
SCHEME 1. One-Pot Sequential Procedure
michele.bertrand@uniV-cezanne.fr
ReceiVed January 13, 2009
Our aim was to devise a DKR process. To reach such an
objective, several conditions had to be fulfilled. First of all, the
racemization procedure had to be compatible with the kinetic
resolution conditions. Besides the requirement of the highest
possible enantioselectivity for the KR, it was also essential for
the rate of racemization of the slow reacting amine enantiomer
to be fast compared to its enzyme-mediated conversion into the
corresponding amide.8
The synthesis of (S)-amides via kinetic resolution of a racemic
mixture can be achieved with commercially available proteases.9
The catalytic triad of the latter is the mirror image of that
encountered in lipases.10 We have shown recently that the use
of carbamoyl glycine trifluoroacetates derived from octanoic
acid, as acyl donors, enabled alkaline protease-catalyzed resolu-
tion of most aliphatic amines to proceed within 15 min to 6 h
depending on the substrate, with good to high enantioselectiv-
ity.11 This enzyme has less thermal stability than CAL-B. It
was necessary to find out how to perform the radical racem-
ization at a temperature that did not exceed 40 °C. This condition
was fulfilled by generating sulfanyl radical via photolysis of
A one-pot sequential process, involving a radical racemiza-
tion and an enzymatic resolution, provides access to (S)-
amides, from racemic amines, with ee and yields ranging
from 78 to 94% and 58 to 80%, respectively.
Dynamic kinetic resolution (DKR) of racemic amines enables
their conversion into enantiomerically pure amides.1 Our group2
and others3,4 have recently reported (R)-selective chemoenzy-
(5) (a) Escoubet, S.; Gastaldi, S.; Vanthuyne, N.; Gil, G.; Siri, D.; Bertrand,
M. P. J. Org. Chem. 2006, 71, 7288. (b) Escoubet, S.; Gastaldi, S.; Timokhin,
V. I.; Bertrand, M. P.; Siri, D. J. Am. Chem. Soc. 2004, 126, 12343. (c) Escoubet,
S.; Gastaldi, S.; Vanthuyne, N.; Gil, G.; Siri, D.; Bertrand, M. P. Eur. J. Org.
Chem. 2006, 3242. (d) Bertrand, M. P.; Escoubet, S.; Gastaldi, S.; Timokhin,
V. I. Chem. Commun. 2002, 216.
(6) Routaboul, L.; Vanthuyne, N.; Gastaldi, S.; Gil, G.; Bertrand, M. P. J.
Org. Chem. 2008, 73, 364.
(7) (a) Kim, M.-J.; Chung, Y. I.; Lee, H. K.; Kim, D.; Park, J. J. Am. Chem.
Soc. 2003, 125, 11494. (b) Kim, M.-J.; Kim, H. M.; Kim, D.; Ahn, Y.; Park, J.
Green Chem. 2004, 6, 471. (c) Bore´n, L.; Mart´ın-Matute, B.; Xu, Y.; Cordova,
A.; Ba¨ckvall, J.-E. Chem. Eur. J. 2006, 12, 225.
(8) Mart´ın-Matute, A. B.; Ba¨ckvall, J.-E. Curr. Opin. Chem. Biol. 2007, 11,
226.
(9) (a) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis,
Regio-and StereoselectiVe Biotransformations, 2nd ed.; Wiley-VCH: Weinheim,
Germany, 2006; Chapter 6. (b) Bordera, F. Chem. ReV. 2002, 102, 4817, and
refs cited therein.
(10) (a) Fitzpatrick, P. A.; Klibanov, A. M. J. Am. Chem. Soc. 1991, 113,
3166. (b) Kazlauskas, R. J.; Weissfloch, A. N. E. J. Mol. Catal. B 1997, 3, 65.
(c) Savile, C. K.; Kazlauskas, R. J. J. Am. Chem. Soc. 2005, 127, 2104. (d)
Mugford, P. F.; Wagner, U. G.; Jiang, Y.; Faber, K.; Kazlauskas, R. J. Angew.
Chem., Int. Ed. 2008, 47, 8782.
(11) Nechab, M.; El Blidi, L.; Vanthuyne, N.; Gastaldi, S.; Bertrand, M. P.;
Gil, G. Org. Biomol. Chem. 2008, 3917.
† Equipe Chimie Mole´culaire Organique.
‡ Chirosciences.
(1) For general reviews, see: (a) Faber, K. Chem. Eur. J. 2001, 7, 5004. (b)
Pellissier, H. Tetrahedron 2003, 59, 8291. (c) Pellissier, H. Tetrahedron 2008,
64, 1563.
(2) Gastaldi, S.; Escoubet, S.; Vanthuyne, N.; Gil, G.; Bertrand, M. P. Org.
Lett. 2007, 9, 837.
(3) (a) Parvulescu, A. N.; Jacobs, P. A.; De Vos, D. E. AdV. Synth. Catal.
2008, 350, 113. (b) Roengpithya, C.; Patterson, D. A.; Livingston, A. G.; Taylor,
P. C.; Irwin, J. L.; Parrett, M. R. Chem. Commun. 2007, 3462. (c) Parvulescu,
A. N.; Jacobs, P. A.; De Vos, D. E. Chem. Eur. J. 2007, 13, 2034. (d) Crawford,
J. B.; Skerlj, R. T.; Bridger, G. J. J. Org. Chem. 2007, 72, 669. (e) Blacker,
A. J.; Stirling, M. J.; Page, M. I. Org. Process Res. DeV. 2007, 11, 642. (f)
Veld, M. A. J.; Hult, K.; Palmans, A. R. A.; Meijer, E. W. Eur. J. Org. Chem.
2007, 5416. (g) Kim, M.-J.; Kim, W.-H.; Han, K.; Choi, Y. K.; Park, J. Org.
Lett. 2007, 9, 1157. (h) Stirling, M.; Blackerb, J.; Page, M. I. Tetrahedron Lett.
2007, 48, 1247. (i) Hoben, C. E.; Kanupp, L.; Ba¨ckvall, J.-E. Tetrahedron Lett.
2007, 49, 977. (j) Paetzold, J.; Ba¨ckvall, J.-E. J. Am. Chem. Soc. 2005, 127,
17620. (k) Reetz, M. T.; Schimossek, K. Chimia 1996, 50, 668.
(4) For the preparation of (R)-amines from chemoenzymatic deracemization,
see also: (a) Bailey, K. R.; Ellis, A. J.; Reiss, R.; Snape, T. J.; Turner, N. J.
Chem. Commun. 2007, 3640. (b) Dunsmore, C. J.; Carr, R.; Fleming, T.; Turner,
N. J. J. Am. Chem. Soc. 2006, 128, 2224. and previous refs cited therein.
10.1021/jo900074w CCC: $40.75
Published on Web 03/10/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 2901–2903 2901