C O M M U N I C A T I O N S
Table 2. Intramolecular C-C Activation/Carboacylation Reactionsc
providing access to carbocyclic and heterocyclic compounds in good
to excellent yields. Current efforts are directed toward both
intermolecular and asymmetric carboacylation as well as discovering
other new catalytic processes triggered by C-C σ bond activation.
Acknowledgment. Financial support was provided by the
University of Minnesota with startup funds and the donors of the
American Chemical Society Petroleum Research Fund by a Type
G award. We thank Profs. Tom Hoye and Andrew Harned for
helpful discussions and chemicals. We thank Dr. Leticia Yao for
assistance with NMR spectroscopy and Matthew Meyers and Jacob
Schmidt for assistance with mass spectrometry.
Supporting Information Available: Experimental procedures,
tabulated data, copies of NMR spectra, and copies of 2D NMR for
compound 2 are provided. This material is available free of charge via
References
(1) Reviews: (a) Nec¸as, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (b)
Jun, C.-H. Chem. Soc. ReV. 2004, 33, 610. (c) Rybtchinski, B.; Milstein,
D. In ActiVation and Functionalization of C-H Bonds; Goldberg, K. I.,
Goldman, A. S., Eds.;ACS Symposium Series 885; American Chemical
Society: Washington, DC, 2004; Vol. 885, p 70. (d) Murakami, M.; Ito,
Y. In ActiVation of UnreactiVe Bonds and Organic Synthesis; Murai, S.,
Ed.; Springer-Verlag: New York, 1999; pp 97-129. (e) Rybtchinski, B.;
Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 871.
(2) Reviews: (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (b)
Bergman, R. G. Nature 2007, 446, 391. (c) Kalyani, D.; Dick, A. R.; Anani,
W. Q.; Sanford, M. S. Tetrahedron 2006, 62, 11483, and references therein.
(d) Godula, K.; Sames, D. Science 2006, 312, 67. (e) Kakuichi, F.; Chatani,
N. AdV. Synth. Catal. 2003, 345, 1077. (f) Labinger, J. A.; Bercaw, J. E.
Nature 2002, 417, 507.
(3) A notable exception is the activation of the C-CN bond; select recent
examples: (a) Nakao, T.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.;
Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874. (b) Watson, M. P.;
Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594. (c) Nakao, Y.; Yada,
A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428. (d) Nishihara,
Y.; Inoue, Y.; Itazaki, M.; Takagi, K. Org. Lett. 2005, 7, 2639. (e)
Nakazawa, H.; Kamata, K.; Itazaki, M. Chem. Commun. 2005, 4004. (f)
Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004,
126, 3627. (g) Taw, F. L.; Mueller, A. H.; Bergman, R. G.; Brookhart, M.
J. Am. Chem. Soc. 2003, 125, 9808. (h) Miller, J. A.; Dankwardt, J. W.;
Penney, J. M Synthesis 2003, 1643.
(4) Examples of activation of strained-ring C-C sigma bonds, especially those
involving cyclopropanes and cyclobutanes, are too prevalent to provide a
complete listing here.
a Isolated yield after chromatography with SiO2. b Reaction stopped
after 24 h. c Condition A: 5 mol% {RhCl(C2H4)2}2, PhMe, 130 °C, 48 h.
Condition B: 5 mol% Rh(OTf)(COD)2, PhMe, 130 °C, 24 h. Condition
C: 10 mol% RhCl(PPh3)3, PhMe, 130 °C, 24 h.
(5) (a) Suggs, J. W.; Jun, C.-H. J. Am. Chem. Soc. 1986, 108, 4679. (b) Suggs,
J. W.; Jun, C.-H. J. Am. Chem. Soc. 1984, 106, 3054.
(6) A classic example is the synthetically useful decarbonylation of aldehydes
to provide a C-H bond: (a) Tsuji, J.; Ohno, K. Tetrahedron Lett. 1965, 6,
3969. (b) Hawthorne, J. O.; Wilt, M. H. J. Org. Chem. 1960, 25, 2215. (c)
Eschinazi, H. E. Bull. Soc. Chim. France 1952, 967.
group was also replaced with a pyrrole (17, entry 8) providing
dihydropyrrolizine 18 in 63% yield after cyclization of 17.
The origins of the diminished reactivity of the phosphine-free
catalysts with the anthranilic ketone-derived substrate (13) are
unclear. We speculate that the C-C activation step is slower in
the series because the ketone is less electrophilic, owing to electron
donation from the 2-amino group. The addition of triphenylphos-
phine ligands might make the rhodium catalyst more nucleophilic,
allowing the metal to attack the carbonyl and initiate the C-C
activation. An alternative hypothesis is that the anthranilic ketone
functional group sequesters the catalyst by nonproductive coordina-
tion, inhibiting C-C activation. To test this latter hypothesis, we
mixed 1 and 13 and heated the mixture in the presence of 5 mol %
{RhCl(C2H4)2}2. Analysis of the crude reaction mixture by 1H NMR
indicated complete consumption of 1 and the formation of 2, which
disfavors the catalyst deactivation hypothesis.
(7) ꢀ-Carbon elimination in unstrained systems; representative examples: (a)
Shintani, R.; Takatsu, K.; Hayashi, T. Org. Lett. 2008, 10, 1191. (b) Iwasaki,
M.; Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2007, 129, 4463. (c) Tursky, M.; Nec¸as, D.; Drabina, P.; Sedla´k, M.; Kotora,
M. Organometallics 2006, 25, 901. (d) Nec¸as, D.; Tursky, M.; Kotora, M.
J. Am. Chem. Soc. 2004, 126, 10222. (e) Terao, Y.; Wakui, H.; Satoh, T.;
Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407. (f) Chatani,
N.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1999, 121, 8645.
(8) ꢀ-Carbon elimination is thought to be an important mechanistic step in
norbornene-mediated C-H functionalization reactions; examples: (a)
Rudolph, A.; Rackelmann, N.; Lautens, M. Angew. Chem., Int. Ed. 2007,
46, 1485. (b) Faccini, F.; Motti, E.; Catellani, M. J. Am. Chem. Soc. 2004,
126, 78.
(9) (a) Suggs, J. W.; Jun, C.-H. J. Chem. Soc., Chem. Commun. 1985, 92. (b)
For a recent review of related reactions of 2-amino-3-picoline-derived
imines, see: Park, Y. J.; Par, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41,
222.
(10) Trost, B. M. Science 1991, 254, 1471.
(11) For recent reviews on all-carbon stereocenter formation, see : (a) Trost,
B. M.; Jiang, C. Synthesis 2006, 369. (b) Christoffers, J., Baro, A., Eds.
Quaternary Stereocenters; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, 2005. (c) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci
U.S.A. 2004, 101, 5363. (d) Denissova, I.; Barriault, L. Tetrahedron 2003,
59, 10105.
In summary, we have disclosed a new alkene carboacylation
reaction initiated by quinoline-directed, rhodium-catalyzed C-C
bond activation. The alkene carboacylation allows for the construc-
tion of all-carbon quaternary centers, with a broad substrate scope,
(12) Compound 2 was characterized by 1H NMR, 13C NMR, COSY, HMQC,
HMBC, IR, and MS. See Supporting Information for details.
JA8066308
9
J. AM. CHEM. SOC. VOL. 131, NO. 2, 2009 413