Catalytic Formation of 1-Benzyl-4-phenyl-1H-1,2,3-triazole
terminal alkyne. We are seeking higher click efficiency by
carrying out a room temperature three-component reaction
using phenylacetylene, benzyl chloride, and an inorganic
azide (NaN3) as a one-pot mixture in MeCN/H2O (v/v 2:1,
6 mL) in the air. Similar success was reported in an aqueous
ionic liquid medium but under a fairly high level (15%) of
Cu(I) catalysts and in the presence of a base (Na2CO3).11h
The reaction readily proceeds to give 1-benzyl-4-phenyl-1H-
1,2,3-triazole without the need to introduce either a base or
reducing agent. The presence of MeCN, which is usually
not a desirable solvent, as it could saturate the active Cu(I)
catalyst, presumably promotes the reduction of Cu(II) to
Cu(I) (for 1-3).10f,18 The product, 1-benzyl-4-phenyl-1H-
1,2,3-triazole,11g,19 was purified (by column chromatogra-
20
phy), isolated, and confirmed by H and 13C NMR and
X-ray crystallographic analyses.19 Some representative cata-
lytic data are summarized in Table 2. All four complexes
give good isolated yields, with up to 98% for catalyst 3 (5%
loading; entry 16) or 87% for 4 (2% loading; entry 19). The
yields drop to 49-75% when the catalyst loading is reduced
to the lower limit of 0.5 mol % (entries 3, 9, 15, 21). All
catalysts are still active in pure water, even at 0.5 mol %
loading (entries 6, 12, 18, 24), but the yields are generally
lower. Good activities of [CuX(NHC)] (NHC ) N-hetero-
cyclic carbene) on similar click chemistry but using organic
azide have been reported.11g Within this system, 3 generally
shows the highest activities, possibly attributed to the ready
formation of catalytically active unsaturated species through
facile dissociation of triflate and water, as well as its higher
solubility and stability in the aqueous-based media.
1
Figure 5. (a) Thermal ellipsoids at 30% probability of the molecular
structure of 4. Selected bond distances [Å] and angles [deg]: Cu1-N1
2.085(5), Cu1-S1 2.307(2), Cu1-I1 2.5831(9), Cu1-I1A 2.7463(9),
Cu1-Cu1A 2.525(2), Cu2-S2 2.332(2), Cu2-I1A 2.6816(8), Cu2-I2
2.6329(9), Cu2-I2B 2.6509(8), Cu2-Cu2B 2.844(2), N1-Cu1-S1 91.2(2),
N1-Cu1-I1 119.4(1), N1-Cu1-I1A 100.4(1), N1-Cu1-Cu1A 134.4(1),
S1-Cu1-I1 112.96(5), S1-Cu1-Cu1A 131.02(7), S1-Cu1-I1A 103.68(5),
I1-Cu1-I1A 123.53(3), Cu1A-Cu1-I1A 58.50(3), Cu1A-Cu1-I1
65.03(3), Cu1-I1-Cu2A 113.02(3), Cu1-I1-Cu1A 56.47(3), S2-Cu2-I1A
107.51(5), S2-Cu2-I2 113.94(5), S2-Cu2-I2B 99.10(5), S2-Cu2-Cu2B
121.55(6), I2-Cu2-I2B 114.88(3), I2-Cu2-I1A 109.54(3), I2B-Cu2-I1A
111.33(3), I2-Cu2-Cu2B 57.75(3), I2B-Cu2-Cu2B 57.14(3), I1A-
Cu2-Cu2B 130.45(4), Cu2A-I1-Cu1A 93.79(2), Cu2-I2-Cu2B 65.12(3).
(symmetry codes: A, 1 - x, -y, 1 - z; B, 1 - x, 1 - y, 1 - z; C, x, y -
1, z; D, x, 1 + y, z). (b) [Cu4I4]n coordination polymer chain along the b
direction.
overall polymer chain thus shows intercalation of doubly
bridging µ2- and singly bridging µ3-iodides with Cu4 as the
repeating unit, namely, [Cu4I4]n. The triply bridging iodide
also brings a set of copper atoms to within bonding distance
(Cu1-Cu1A 2.525 Å), which is significantly shorter than the
other pair (Cu2-Cu2A 2.844 Å). The SNS ligand crosses
between two Cu2 moieties with longer separations (Cu1· · ·Cu2
3.963 Å), whereas the remaining metal separation is even longer
(Cu1 · · ·Cu2A 4.391 Å). There are no apparent interchain
interactions, either via H-bonding or Cu · · ·Cu interactions
(Cu1 · · ·Cu1E 7.211 Å, symmetry code E: 2 - x, -y, 1 - z).
This Cu(I) coordination polymer is assembled by bridging
iodides and the [SNS] hybrid ligand. The latter effectively
stitches the two rhombic Cu2I2 entities by traversing across
two metal centers, thereby fixing two Cu2I2’s into a Cu4I4
core (Figure 5b). This results in an unusual form of helical
arrangement of the SNS hybrid ligand wrapping around the
tetrahedral copper atoms along the metal chain. A myriad
of CuI discrete molecular entities, as well as 1-D and 2-D
structures, have been reported in recent years.8b,9b,c,17 The
known 1-D polymer system contains the likes of a zigzag
[CuI]n chain,17a,b [CuI]n columnar chain,17e staircase [CuI]n
chain,17f-k [Cu8I7]nn+ cluster-based stair-like double chain,17l
double six-membered rings [Cu6I6]n core-based chains,17m
[Cu14I18]4- anion,17n [Cu6I5]nn+ and [Cu2I]nn+ chains, and so
forth.17o The connected rhombic [Cu4I4]n motif of 4 is a new
addition to this range of 1-D polyiodocuprates.
(17) (a) The´bault, F.; Barnett, S. A.; Blake, A. J.; Wilson, C.; Champness,
N. R.; Schro¨der, M. Inorg. Chem. 2006, 45, 6179. (b) Caradoc-Davies,
P. L.; Hanton, L. R.; Hodgkiss, J. M.; Spicer, M. D. J. Chem. Soc.,
Dalton Trans. 2002, 1581. (c) Li, M.; Li, Z.; Li, D. Chem. Commun.
2008, 3390. (d) Blake, A. J.; Brooks, N. R.; Champness, N. R.; Crew,
M.; Deveson, A.; Fenske, D.; Gregory, D. H.; Hanton, L. R.;
Hubberstey, P.; Schro¨der, M. Chem. Commun. 2001, 1432. (e) Blake,
A. J.; Brooks, N. R.; Champness, N. R.; Cooke, P. A.; Deveson, A. M.;
Fenske, D.; Hubberstey, P.; Li, W.-S.; Schro¨der, M. J. Chem. Soc.,
Dalton Trans. 1999, 2103. (f) Blake, A. J.; Brooks, N. R.; Champness,
N. R.; Hanton, L. R.; Hubberstey, P.; Schro¨der, M. Pure Appl. Chem.
1998, 70, 2351. (g) Peng, R.; Li, D.; Wu, T.; Zhou, X.-P.; Ng, S. W.
Inorg. Chem. 2006, 45, 4035. (h) Persky, N. S.; Chow, J. M.;
Poschmann, K. A.; Lacuesta, N. N.; Stoll, S. L.; Bott, S. G.; Obrey,
S. Inorg. Chem. 2001, 40, 29. (i) Fitchett, C. M.; Steel, P. J. Inorg.
Chem. Commun. 2007, 10, 1297. (j) Kim, T. H.; Shin, Y. W.; Kim,
J. S.; Lee, S. S.; Kim, J. Inorg. Chem. Commun. 2007, 10, 717. (k)
Cariati, E.; Roberto, D.; Ugo, R.; Ford, P. C.; Galli, S.; Sironi, A.
Inorg. Chem. 2005, 44, 4077. (l) Cheng, J.-W.; Zheng, S.-T.; Yang,
G.-Y. Inorg. Chem. 2007, 46, 10261. (m) Li, G.; Shi, Z.; Liu, X.;
Dai, Z.; Feng, S. Inorg. Chem. 2004, 43, 6884. (n) Allen, D. W.;
Gelbrich, T.; Hursthouse, M. B. Inorg. Chim. Acta 2001, 318, 31. (o)
Wu, T.; Li, M.; Li, D.; Huang, X.-C. Cryst. Growth Des. 2008, 8,
568. (p) Cheng, J.-W.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y.
Chem.sEur. J. 2008, 14, 88.
(18) Kratochvil, B.; Zatko, D. A.; Markuszewski, R. Anal. Chem. 1966,
38, 770.
(19) (a) Lokanath, N. K.; Sridhar, M. A.; Shashidhara Prasad, J.; Bhadre
Gowda, D. G.; Rangappa, K. S. Z. Kristallogr. New Cryst. Struct.
1997, 212, 35. (b) Suijkerbuijk, B. M. J. M.; Aerts, B. N. H.; Dijkstra,
H. P.; Lutz, M.; Spek, A. L.; van Koten, G.; Gebbink, R. J. M. K.
Dalton Trans. 2007, 1273.
(20) NMR data for catalytic product of 1-benzyl-4-phenyl-1H-1,2,3-triazole:
1H NMR (500 MHz, CDCl3, 25°C): δ 5.57 (s, 2H, CH2), 7.26-7.41
(m, 8H), 7.66 (s, 1H), 7.79 and 7.80 (d, 2H). 13C NMR (125.77 MHz,
CDCl3, 25°C): δ 54.2, 119.4, 125.7, 128.0, 128.1, 128.8, 129.1, 130.5,
134.6, 148.2.
CuAAA Click Reaction Catalyzed by 1-4. A typical
Cu-catalyzed Huisgen reaction couples organoazide with a
Inorganic Chemistry, Vol. 48, No. 3, 2009 1211