Highly Efficient Molybdenum(II)-Catalyzed Intramolecular Allylic Alkylation of Arenes
COMMUNICATIONS
References
[1] a) G.Dyker, Angew. Chem. 1999, 111, 1808–1822;
Angew. Chem. Int. Ed. 1999, 38, 1698–1712; b) G.
Dyker, in: Handbook of C-H Transformations, Wiley-
VCH: Weinheim, 2005.
[2] For recent reviews see: M.Bandini, E.Emer, S.Tom-
masi, A.Umani-Ronchi, Eur. J. Org. Chem. 2006,
3527–3544, and references cited therein.
Scheme 4. Representative example of decarboxylation reac-
tion to give the monoester 6a.
[3] For Pd/In intramolecular mediated allyl cross-coupling
of haloarenes see: D.Seomoon, K.Lee, H.Kim, P.H.
Lee, Chem. Eur. J. 2007, 13, 5197–5206.
for 4a (Scheme 4).Following Krapcho-type conditions
(LiCl, DMSO wet, 1508C),[16] the mono-ester 6a was
isolated in 80% yield as a 60:40 mixture of diastereo-
isomers.
As of today, we do not have sufficient evidence to
fully define the operating reaction mechanism.There-
fore, neither the presence of a h3-Mo complex nor
allyl-carbocation intermediates[17] can be ruled out a
priori.
In conclusion, a practical and direct route to 4-
vinyl-1,2,3,4-tetrahydronaphthalenes, catalyzed by a
Mo(II) salt, is described.The mild reaction conditions
(moisture tolerance, low loading of catalyst), com-
bined with the excellent isolated yields recommend
the present approach for applications in large-scale
production.Mechanistic studies as well as the devel-
opment of an enantioselective variant of the cycliza-
tion are underway in our laboratories.
[4] a) M.Bandini, A.Melloni, A.Umani-Ronchi,
Org.
Lett. 2004, 6, 3199–3202; b) M.Bandini, A.Melloni, S.
Tommasi, A.Umani-Ronchi, Synlett 2005, 1199–1222;
c) M.Kimura, M.Futamata, R.Mukai, Y.Tamaru,
J.
Am. Chem. Soc. 2005, 127, 4592–4593; d) M.Bandini,
A.Melloni, F.Piccinelli, R.Sinisi, S.Tommasi, A.
Umani-Ronchi, J. Am. Chem. Soc. 2006, 128, 1424–
1426; e) B.M. Trost, J. Quancard, J. Am. Chem. Soc.
2006, 128, 6314–6315; f) H.Y.Cheung, W-.Y.Yu, F.L.
Lam, T.T.-L. Au-Yeung, Z. Zhou, T.H. Chan, A.S.
Chan. Org. Lett. 2007, 9, 4295–4398; g) A.B.Zaitsev,
S.Gruber, P.S.Pregosin, Chem. Commun. 2007, 4692–
4693.
[5] For representative examples see: a) G.A. Kraus, I.
Jeon, Org. Lett. 2006, 8, 5315–5316; b) I.Fernandez, R.
Hermatschweiler, F.Breher, BS..Pregosin, ML..
Veiros, M.J.Calhorda, Angew. Chem. 2006, 118, 6535–
6540; Angew. Chem. Int. Ed. 2006, 45, 6386–6391; c) S.
Werle, T.Fey, J.M.Neudçrfl, H-.G.Schmalz,
Org. Lett.
2007, 9, 3555–3558.
[6] a) G.R.Cook, R.Hayashi,
Experimental Section
Org. Lett. 2006, 8, 1045–
1048; b) R.Hayashi, G.R.Cook, 2007, 9, 1311–1314.
[7] a) B.M.Trost, D.L.Van Vraken, Chem. Rev. 1996, 96,
395–422; b) G.Helmchen, A.Pfaltz, Acc. Chem. Res.
2000, 33, 336–345; c) B.M. Trost, M.L. Crawley,
Chem. Rev. 2003, 103, 2921–2944.
Typical Procedure for Mo-Catalyzed Cyclization
In a dry two-necked, round-bottom, 25-mL flask equipped
with a condenser, 0.2 mmol of 3 were dissolved in 2 mL of
reagent grade 1,2-dichloroethane.Then, 5 mmol (1.9 mg) of
[Mo(CO)4Br2]2 were added, and the mixture was stirred at
808C for 16 h.Then, the volatiles were removed under re-
duced pressure and the crude material purified by flash
chromatography (c-hexan:AcOEt 80:20) unless otherwise
specified.
[8] A.V.Malkov, S.L.Davis, I.R.Baxendale, W.L.Mitch-
ˇ
´
ell, P.Koc ovsky, J. Org. Chem. 1999, 64, 2751–2764.
[9] a) J.P. Marino, E. Leborde, G.F. Deering,
Chem. 1994, 59, 3193–3201; b) W.Oppolzer, A.Fürst-
ner, Helv. Chim. Acta 1993, 76, 2329–2337.
J. Org.
1
4a: White wax; yield: 91%; H NMR (200 MHz, CDCl3):
[10] Analogous reaction outcomes were recorded with
d=1.21 (t, J=7.2 Hz, 3H), 1.29 (t, J=7.2 Hz, 3H), 1.98 (dd,
J1 =11.8 Hz, J2 =13.8 Hz, 1H), 2.59 (dd, J1 =4.0 Hz, J2 =
11.8 Hz, 1H), 3.10 (d, J=16.0 Hz, 1H), 3.25 (d, J=16.0 Hz,
1H), 3.45–3.56 (m, 1H), 3.82 (s, 3H), 3.87 (s, 3H), 4.12–4.28
(m, 4H), 5.16–5.26 (m, 2H), 5.67–5.87 (m, 1H), 6.63 (s, 1H),
6.67 (s, 1H). 13C NMR (50 MHz, CDCl3): d=14.1(2C), 34.7,
35.2, 41.4, 53.7, 55.9(2C), 61.4, 61.7, 111.4(2C), 116.3, 125.6,
128.1, 141.7, 147.6, 147.8, 170.8, 171.8; LC-MS: m/z=363.0
(M+1), 747.2 (2M+Na); anal.calcd for C 20H26O6: C 66.28,
H 7.23; found: C 66.20, H, 7.31%.
Pd2dba3·CHCl3, Pd
sources.
[11] A.V. Malkov, I.R.Baxendale, D.Dvor µk, D.J. Mans-
A
G
ˇ
ˇ
´
field, P.Koc ovsky, J. Org. Chem. 1999, 64, 2737–2750.
[12] Some control experiments were carried out on the
model substrate 3a in order to rule out the potential
roles of Brønsted acidity and hydroxy [Mo] species in
the ring-closing process: i) HClEt O (10 mol%), DCE,
2
808C, 16 h=decomposition of the starting material; ii)
stirring of [Mo(CO)4Br2]2 in reagent grade DCE under
air (16 h) then catalysis=4a’ (75% yield); iii) use of hy-
drolyzed [Mo(CO)4Br2]2 in the cyclization=recovery of
unreacted 3a (91%).
ˇ
´
[13] A.V.Malkov, P.Spoor, V.Vinader, P.Koc
ovsky, J. Org.
Acknowledgements
Chem. 1999, 64, 5308–5311.
[14] a) S.Ahn, Y-.S.Song, B.R.Yoo, I.N.Jung,
Organome-
This work was supported by M.I.U.R. (Rome), FIRB Project,
Consorzio C.I.N.M.P.I.S. and University of Bologna.
tallics 2000, 19, 2777–2780; b) R.C.J. Atkinson, V.C.
Adv. Synth. Catal. 2008, 350, 531 – 536
ꢀ 2008 Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim
535