J. Routier, M. Calancea, M. David, Y. Vallée, J.-N. Denis
SHORT COMMUNICATION
Acknowledgments
Financial support from the Centre National de la Recherche Sci-
entifique (CNRS), the Université Joseph Fourier (UMR-5250,
ICMG FR-2607) and a fellowship (to J. R.) from the Research
Ministry (MESR) are gratefully acknowledged.
[1] a) D. A. Whiting, Nat. Prod. Rep. 1990, 7, 349–364; b) M. Gor-
daliza, M. A. Castro, J. M. Miguel del Corral, A. San Felici-
ano, Curr. Pharm. Des. 2000, 6, 1811–1839; c) S. Apers, A.
Vlietinck, L. Pieters, Phytochem. Rev. 2004, 2, 201–207; d) G. P.
Moss, Pure Appl. Chem. 2000, 72, 1493–1523; e) R. S. Ward,
Nat. Prod. Rep. 1999, 16, 75–96; f) R. S. Ward, Nat. Prod. Rep.
1995, 12, 183–205; g) R. S. Ward, Phytochem. Rev. 2004, 2,
391–400.
[2] a) R. S. Ward, Synthesis 1992, 719–730; b) J. Chang, J. Reiner,
J. Xie, Chem. Rev. 2005, 105, 4581–4609; c) R. S. Ward, Phyto-
chem. Rev. 2003, 2, 391–400.
[3] a) T. F. Imbert, Biochimie 1998, 80, 207–222; b) Z.-Q. Wang,
H. Hu, H.-X. Chen, Y.-C. Cheng, K.-H. Lee, J. Med. Chem.
1992, 35, 871–877; c) Y.-L. Zhang, X. Guo, Y.-C. Cheng, K.-
H. Lee, J. Med. Chem. 1994, 37, 446–452; d) J. D. Sellars, P. G.
Steel, Eur. J. Org. Chem. 2007, 3815–3828.
Figure 4. Stereoselectivity model for the Pictet–Spengler reaction.
the aromatic 2Ј-H and 6Ј-H protons after irradiation of
11a-H, confirming that the aromatic pendant group was on
the α side of the molecule (Figure 4). These results corre-
spond well with those described in the literature.[19] In our
reaction, the corresponding cis 5-H/11a-H stereoisomer was
not observed. It is possible to conclude that in compound
15 the aromatic pendant group adopts a pseudo-axial orien-
tation. For steric reasons, the plane of this aromatic pen-
dant ring is approximately orthogonal to the rest of the
molecule.
This result is in good agreement with the conclusions de-
scribed by Lemaire and co-workers[12d] who reported that,
during the synthesis of tetrahydroisoquinoline derivatives,
the stereochemical outcome of the Pictet–Spengler reaction
could be rationalized by a cyclization step involving the at-
tack of the aromatic core on the (Z)-iminium moiety from
the less hindered side, leading to the 1,3-trans derivatives
(Figure 4).
During reaction of 14 with p-methoxybenzaldehyde di-
methylacetal, the nucleophilic attack of the indole ring on
the less hindered side of the (Z)-iminium moiety led to the
expected compound 15. The stereochemistry of the newly
created stereogenic center C-5 is governed by the stereo-
chemistry of the oxazolidinone core, leading to a 1,3-trans
relationship between the two implicated substituents, not by
the presence of the 11-amino substituent.
[4] Azaelliptitoxin is the best well-known heterolignan for its bio-
logical activities. The generic name “heterolignan” was first in-
troduced by Medarde et al., see: M. Medarde, R. Peláez-Lam-
amié de Clairac, F. Tomé, J. L. Lopez, A. San Feliciano, Arch.
Pharm. 1995, 328, 403–407.
[5] a) F. Leleurtre, J. Madalengoitia, A. Orr, T. J. Cuzy, E. Lehnert,
T. Macdonald, Y. Pommier, Cancer Res. 1992, 52, 4478–4483;
b) E. Solary, F. Leteurtre, K. D. Paull, D. Scudiero, E. Hamel,
Y. Pommier, Biochem. Pharmacol. 1993, 45, 2449–2456; c) J. J.
Tepe, J. S. Madalengoitia, K. M. Slunt, K. W. Werbovetz, P. G.
Spoors, T. L. Macdonald, J. Med. Chem. 1996, 39, 2188–2196;
d) T. A. Miller, P. R. Vachaspati, M. A. Labroli, C. D. Thomp-
son, A. L. Bulman, T. L. Macdonald, Bioorg. Med. Chem. Lett.
1998, 8, 1065–1070; e) B. Eymin, E. Solary, S. Chevillard, L.
Dubrez, F. Goldwasser, O. Duchamp, P. Genne, F. Leteurtre,
Y. Pommier, Int. J. Cancer 1995, 63, 268–275; f) F. Leleurtre,
D. L. Sackett, J. Madalengoitia, G. Kohlhagen, T. Macdonald,
E. Hamel, K. D. Paull, Y. Pommier, Biochem. Pharmacol. 1995,
49, 1283–1290; g) J. S. Madalengoitia, J. J. Tepe, K. A. Werbov-
etz, E. K. Lehnert, T. L. Macdonald, Bioorg. Med. Chem. 1997,
5, 1807–1815.
[6] L. F. Liu, Annu. Rev. Biochem. 1989, 58, 351–375.
[7] a) S. Katsumura, A. Kondo, Q. Han, Chem. Lett. 1991, 1245–
1248; b) S. Katsumura, N. Yamamoto, M. Morita, Q. Han,
Tetrahedron: Asymmetry 1994, 5, 161–164.
[8] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155–4156.
[9] D. More, N. S. Finney, Org. Lett. 2002, 4, 3001–3003. For a
recent review, see: U. Ladziata, V. V. Zhdankin, ARKIVOC
2006, 10, 26–58.
Conclusions
Enantiopure 11-(pivaloylamino) analog 15 of azaellipti-
toxin 3 has been prepared in eight steps from (S)-glycidol
(7) in 24% overall yield. The strategy is based on the prepa-
ration of the enantiopure α-chiral aldehyde (R)-9 and its
use as a building block in the stereoselective synthesis of 15,
which has the same absolute stereochemistry (11R,11aS,5R)
than azaelliptitoxin (3) and the corresponding 11-amino de-
rivatives 5b. We described the first enantioselective synthesis
of the key intermediate (R)-9 in a two-step sequence from
(S)-glycidol (7). Application of this stereoselective multi-
step sequence to the preparation of more complex analogs
of azaelliptitoxin is currently under investigation in our
group.
[10] The (R)- and racemic (Ϯ)-alcohols 8 were prepared from their
corresponding (R)- and racemic glycidols according to ref.[7]
[11] (+)-(R)-Mosher’s acid [(+)-(R)-MTPA] was used as chiral deri-
vating agent.
[12] Selected references: a) G. Wang, Anti-Infective Agents Med.
Chem. 2008, 7, 32–49 and references cited therein; b) G. Zap-
pia, P. Menendez, G. D. Monache, D. Misiti, L. Nevola, B.
Botta, Mini-Rev. Med. Chem. 2007, 7, 389–409; c) J.-F. Li, R.
Yang, L. Nie, L.-J. Yang, R. Huang, J. Lin, J. Pept. Res. 2005,
66, 319–323; d) S. Aubry, S. Pellet-Rostaing, M. Lemaire, Eur.
J. Org. Chem. 2007, 5212–5225; e) D. A. Evans, Aldrichim. Acta
1982, 15, 23–32; f) D. J. Ager, I. Prakash, D. R. Schaad, Ald-
richim. Acta 1997, 30, 3–12; g) D. J. Ager, I. Prakash, D. R.
Schaad, Chem. Rev. 1996, 96, 835–875; h) J. L. Charlton, G.-
L. Chee, Can. J. Chem. 1997, 75, 1076–1083; i) J. T. Randolph,
P. Waid, C. Nichols, D. Sauer, F. Haviv, G. Diaz, G. Bammert,
L. M. Besecke, J. A. Segreti, K. M. Mohning, E. N. Bush, C. D.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data and NMR
spectra for compounds 8–15.
5690
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 5687–5691