266
C. Pierry et al. / Tetrahedron Letters 50 (2009) 264–266
4. (a) Edmondson, S. D.; Wei, L.; Xu, J.; Shang, J.; Xu, S.; Pang, J.; Chaudhary, A.;
three-step sequence
71% overall yield
NHFmoc
Me
Dean, D. C.; He, H.; Leiting, B.; Lyons, K. A.; Patel, R. A.; Patel, S. B.; Scapin, G.;
Wu, J. K.; Beconi, M. G.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett.
2008, 18, 2409–2413; (b) Van der Veken, P.; Senten, K.; Kertesz, I.; De Meester,
I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med.
Chem. 2005, 48, 1768–1780; (c) Van der Veken, P.; Kertesz, I.; Senten, K.;
Haemers, A.; Augustyns, K. Tetrahedron Lett. 2003, 44, 6231–6234; (d) Lin, J.;
Toscano, P. J.; Welch, J. T. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 14020–14024; (e)
Zhao, K.; Lim, D. S.; Funaki, T.; Welch, J. T. Bioorg. Med. Chem. 2003, 11, 207–
215; (f) Welch, J. T.; Lin, J. Tetrahedron 1996, 52, 291–304.
(
SS, S)-9b
HO2C
see ref. 8a
F
10
Scheme 3. Synthesis of Fmoc-Ala-W[(Z)CF@CH]-Gly dipeptide analogue 10.
diastereomer of 8b, which was found to have the S-configuration.8a
This meant that addition of Grignard reagent MeMgBr to sulfini-
mine 6 proceeded on Re-face of the imine function. By analogy,
we assumed that all other Grignard reagents were added similarly
to b-fluoroenimines 6 and 7.
This methodology is quite general and should be amenable to
the synthesis of a large variety of chiral fluorinated allyl amines. In-
deed, the stereoselective addition of organometallic species served
as the key step in the construction of dipeptide analogues as exem-
5. Allmendinger, T.; Felder, E.; Hungerbühler, E. Tetrahedron Lett. 1990, 31, 7301–
7304.
6. Waelchli, R.; Gamse, R.; Bauer, W.; Meigel, H.; Lier, E.; Feyen, J. H. M. Bioorg.
Med. Chem. Lett. 1996, 6, 1151–1156.
7. (a) Lamy, C.; Hofmann, J.; Parrot-Lopez, H.; Goekjian, P. Tetrahedron Lett. 2007,
48, 6177–6180; (b) Narumi, T.; Tomita, K.; Inokuchi, E.; Kobayashi, K.; Oishi, S.;
Ohno, H.; Fujii, N. Tetrahedron 2008, 64, 4332–4346; (c) Tomita, K.; Narumi, T.;
Niida, A.; Oishi, S.; Ohno, H.; Fujii, N. Biopolymers 2007, 88, 272–278.
8. (a) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem., Int. Ed.
2007, 46, 1290–1292; (b) Dutheuil, G.; Bailly, L.; Couve Bonnaire, S.;
Pannecoucke, X. J. Fluorine Chem. 2007, 128, 34–39.
9. For examples of addition of organometallics to chiral sulfinimides see: (a)
Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984–995; (b)
Morton, D.; Storkman, R. A. Tetrahedron 2006, 62, 8869–8905.
plified by the transformation of (SS,S)-9b into Fmoc-Ala-
W[(Z)CF@
CH]-Gly 10 (Scheme 3).
10. (a) Zoute, L. Ph.D. Thesis, INSA of Rouen, 2007; (b) Lemonnier, G. Ph.D. Thesis,
INSA of Rouen, 2008.
11. Pfund, E.; Lebargy, C.; Rouden, J.; Lequeux, T. J. Org. Chem. 2007, 72, 7871–7877.
12. Typical procedure for synthesis of N-((Z)-1-allyl-5-{[tert-butyl(diphenyl)silyl]oxy}-
In summary, an efficient synthetic method has been developed
whereby diastereoselective addition of Grignard and organolith-
ium reagents to N-(tert-butanesulfinyl)-b-fluoroenimines provided
chiral fluorinated sulfinamides in high yields with diastereomeric
ratios of up to 96:4. Separation of diastereomers on silica gel chro-
matography provided enantiopure versatile intermediates for the
synthesis of stable drug analogues. We have demonstrated that
further simple chemical transformations afforded fluoroolefin
dipeptide mimics.
2-fluoro-2-pentenyl)-2-methyl-2-propanesulfinamide 9f: b-Fluoroenimine
7
(70 mg, 0.152 mmol) was placed in a flask under argon and dissolved in
anhydrous toluene (1 mL). The solution was cooled to 0 °C and allylmagnesium
bromide (168
lL of a 1 M solution in diethyl ether, 0.168 mmol) was slowly
added. After stirring for 40 min, the solution was quenched with a saturated
solution of NH4Cl and extracted three times with EtOAc. The combined organic
layers were then washed with brine, dried over MgSO4, filtered and
concentrated under reduced pressure. The residue was checked by 19F NMR
for determination of diastereomeric ratio (dr = 8:92) and purified by
chromatography on silica gel (eluent: cyclohexane/EtOAc 80/20 to 70/30)
affording the expected compound 9f as a colorless oil (70.2 mg, yield 91%).
Diastereomer (SS,R)-9f: 1H NMR (CDCl3, 300 MHz): d 1.04 (s, 9H), 1.19 (s, 9H),
2.32–2.39 (m, 2H), 2.43–2.57 (m, 2H), 3.35 (d, 3J = 4.35 Hz, 1H), 3.66 (t,
3J = 6.42 Hz, 2H), 3.92 (ddd, 3J = 4.35 Hz, 3J = 6.75 Hz, 3J = 17.50 Hz), 4.93 (dt,
3J = 7.53 Hz, 3J = 37.11 Hz, 1H), 5.15–5.20 (m, 2H), 5.73 (ddd, 3J = 6.97 Hz,
3J = 10.40 Hz, 3J = 17.52 Hz, 1H), 7.35–7.45 (m, 6H), 7.64–7.67 (m, 4H); 13C
NMR (CDCl3, 75.4 MHz): d 19.3, 22.5, 26.9, 27.2, 38.0, 55.4, 55.9, 63.1, 105.4 (d,
3J = 4.4 Hz), 119.8, 127.8, 128.9, 133.2, 133.8, 135.6, 157.7 (d, 1J = 257 Hz); 19F
NMR (CDCl3, 282.5 MHz): d 123.9 (dd, 3J = 17.5 Hz, 3J = 37.1 Hz); MS (EI+):
[M+H+] = 502.00; Anal. Calcd for C28H40FNO2SSi: C, 67.02; H, 8.04; N, 2.79.
Found: C, 66.99; H, 8.31; N, 2.75. Diastereomer (SS,S)-9f: 1H NMR (CDCl3,
300 MHz): d 1.04 (s, 9H), 1.20 (s, 9H), 2.33–2.52 (m, 4H), 3.41 (d, 3J = 4.53 Hz,
1H), 3.43 (t, 3J = 6.59 Hz, 2H), 3.79 (ddd, 3J = 4.53 Hz, 3J = 6.78 Hz,
3J = 18.50 Hz,), 4.95 (dt, 3J = 7.35 Hz, 3J = 38.20 Hz, 1H), 5.07–5.14 (m, 2H),
5.72 (ddd, 3J = 6.97 Hz, 3J = 10.00 Hz, 3J = 17.14 Hz, 1H), 7.34–7.45 (m, 6H),
7.65–7.67 (m, 4H); 13C NMR (CDCl3, 75.4 MHz): d 19.3, 22.7, 26.9, 27.2 (d,
3J = 4.4 Hz), 37.6, 56.4, 56.8 (d, 2J = 28.5 Hz), 63.1, 105.0 (d, 2J = 14.2 Hz), 118.6,
127.7, 129.7, 133.5, 133.9, 135.7, 158.5 (d, 1J = 257 Hz); 19F NMR (CDCl3,
Acknowledgment
We thank the ‘Région Haute-Normandie’ (CRUNCh programme)
for financial support (Ph.D. Grant to C.P.).
References and notes
1. (a) Modern Fluoroorganic Chemistry; Kirsch, P., Ed.; Wiley-VCH: Weinheim,
2004; (b) Fluorine in Organic Chemistry; Chambers, R. D., Ed.; Blackwell: Oxford,
2004; (c) Bégué, J.-P.; Bonnet-Delpon, D., Eds.; Chimie bioorganique et
médicinale du fluor; CNRS Editions: Paris, 2005 or Bioorganic and Medicinal
Chemistry of Fluorine; John Wiley & Sons, Inc., 2008; (d) Thayer, A. Chem. Eng.
News 2006, 84, 15–24.
2. (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,
320–330; (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359–4369; (c) Shah, P.;
Westwell, A. D. J. Enzyme Inhib. Med. Chem. 2007, 22, 527–540; (d) Kirk, K. L. J.
Fluorine Chem. 2006, 127, 1013–1029; (e) Special issue of J. Fluorine Chem.
2008, 129, 725–888.
282.5 MHz):
d
À122.8 (dd, 3J = 18.5 Hz, 3J = 38.2 Hz); MS (EI+):
[M+H+] = 502.00; Anal. Calcd for C28H40FNO2SSi: C, 67.02; H, 8.04; N, 2.79.
Found: C, 67.25; H, 8.11; N, 2.77.
3. (a) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5,
1151–1157; (b) Welch, J. T.; Lin, J.; Boros, L. G.; DeCorte, B.; Bergmann, K.; Gimi,
R. In Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch,
J. T., Eds.; ACS Symp. Ser.: Washington, DC, 1996; pp 129–142.