Organic Letters
Letter
5813. (d) Roberts, V. A.; Garst, M. E.; Torres, N. E. J. Org. Chem. 1984,
49, 1136. (e) Banwell, M. G.; Collis, M. P. J. Chem. Soc., Chem. Commun.
1991, 1343. (f) Banwell, M. G.; Collis, M. P.; Mackay, M. F.; Richards, S.
L. J. Chem. Soc., Perkin Trans. 1 1993, 1913. (g) Dastan, A.; Saracoglu,
N.; Balci, M. Eur. J. Org. Chem. 2001, 2001, 3519.
(9) (a) Frey, B.; Wells, A. P.; Rogers, D. H.; Mander, L. N. J. Am. Chem.
Soc. 1998, 120, 1914. (b) Hong, S.-K.; Kim, H.; Seo, Y.; Lee, S. H.; Cha,
J. K.; Kim, Y. G. Org. Lett. 2010, 12, 3954.
(10) (a) Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew.
Chem., Int. Ed. 2015, 54, 1200. (b) For a related paper, see: Chen, M.;
Sun, N.; Xu, W.; Zhao, J.; Wang, G.; Liu, Y. Chem.Eur. J., DOI:
seven- or six-membered ring systems such as benzotropones,
benzooxepines, phenanthrenes, and quinolin-2(1H)-ones. These
results demonstrate the great synthetic utility of this method-
ology. Further applications of this chemistry toward highly
valuable carbo- or heterocycles are in progress.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, spectroscopic characterization of all
(11) For gold-catalyzed reactions using pyridine or quinoline N-oxides
as the oxidants, for a review, see: (a) Zhang, L. Acc. Chem. Res. 2014, 47,
877. For selected papers, see: (b) Ye, L.; He, W.; Zhang, L. J. Am. Chem.
Soc. 2010, 132, 8550. (c) Vasu, D.; Hung, H. H.; Bhunia, S.; Gawade, S.
A.; Das, A.; Liu, R. S. Angew. Chem., Int. Ed. 2011, 50, 6911. (d) Luo, Y.;
Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. (e) Wang, L.;
Xie, X.; Liu, Y. Angew. Chem., Int. Ed. 2013, 52, 13302. (f) Henrion, G.;
Chavas, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52,
X-ray crystallography of 3a′ (CIF)
X-ray crystallography of 3e′ (CIF)
X-ray crystallography of 4a (CIF)
X-ray crystallography of 7c (CIF)
X-ray crystallography of 7e (CIF)
X-ray crystallography of 10 (CIF)
X-ray crystallography of 12 (CIF)
X-ray crystallography of 18 (CIF)
6277. (g) Nosel, P.; dos Santos Comprido, L. N.; Lauterbach, T.;
̈
Rudolph, M.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2013,
135, 15662. (h) Sun, N.; Chen, M.; Liu, Y. J. Org. Chem. 2014, 79, 4055.
̌
̌ ́ ́
(i) Schulz, J.; Jasíkova, L.; Skríba, A.; Roithova, J. J. Am. Chem. Soc. 2014,
136, 11513. (j) Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.;
Rudolph, M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2014, 53, 3715.
(k) Wang, T.; Shi, S.; Rudolph, M.; Hashmi, A. S. K. Adv. Synth. Catal.
2014, 356, 2337. (l) Wang, T.; Huang, L.; Shi, S.; Rudolph, M.; Hashmi,
A. S. K. Chem. - Eur. J. 2014, 20, 14868.
(12) For a review, see: (a) Garayalde, D.; Nevado, C. Beilstein J. Org.
Chem. 2011, 7, 767. For recent papers, see: (b) Luzung, M. R.;
Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.
(c) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 9708. (d) Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156.
(e) Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 9178.
(f) Hashmi, A. S. K.; Wang, T.; Shi, S.; Rudolph, M. J. Org. Chem. 2012,
77, 7761. (g) Gronnier, C.; Boissonnat, G.; Gagosz, F. Org. Lett. 2013,
15, 4234. (h) Shu, X.-Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am.
Chem. Soc. 2014, 136, 5844.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(Grant Nos. 21125210, 21421091, 21372244, 21572256) and
Chinese Academy of Science for financial support. We also thank
Mr. Jiayuan Li of Lanzhou University for his effort on the
optimization of the purification process.
(13) For a report involving migration of an alkenyl group within a
carbocycle as a side reaction, see: Yeom, H.-S.; Lee, Y.; Jeong, J.; So, E.;
Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew. Chem., Int. Ed. 2010, 49,
1611.
REFERENCES
■
(1) For reviews, see: (a) Fischer, G. Adv. Heterocycl. Chem. 1996, 66,
285. (b) Zhao, J. Curr. Med. Chem. 2007, 14, 2597. (c) Liu, N.; Song, W.;
Schienebeck, C. M.; Zhang, M.; Tang, W. Tetrahedron 2014, 70, 9281.
(2) Terkeltaub, R. A. N. Engl. J. Med. 2003, 349, 1647.
(3) Drenth, J. P. H.; van der Meer, J. W. M. N. Engl. J. Med. 2001, 345,
1748.
(4) Kang, S. Q.; Cai, S. Y.; Teng, L. Acta Pharmacol. Sin. 1981, 16, 867.
(5) Sang, S.; Lambert, J. D.; Tian, S.; Hong, J.; Hou, Z.; Ryu, J.-H.;
Stark, R. E.; Rosen, R. T.; Huang, M.-T.; Yang, C. S.; Ho, C.-T. Bioorg.
Med. Chem. 2004, 12, 459.
(14) The 1H NMR analysis of the reaction mixture indicated that the
hydroxyl proton of 3a was absent, possibly due to the existence of basic
species such as 8-methylquinoline in the reaction mixture, which
captured this acidic proton.
(15) Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.; Kurpejovic,
́
E.
Angew. Chem., Int. Ed. 2004, 43, 6545.
(16) The X-ray crystallography of 3a′, 3e′, 4a, 7c, 7e, 10, 12, and 18 are
shown in the Supporting Information.
(17) TsOH·H2O was required as an additive to complete the reaction
when the reaction was scaled up; for details, see the Supporting
(18) (a) Sagong, H. Y.; Parhi, A.; Bauman, J. D.; Patel, D.; Vijayan, R. S.
K.; Das, K.; Arnold, E.; LaVoie, E. J. ACS Med. Chem. Lett. 2013, 4, 547.
(b) Wei, M.-Y.; Yang, R.-Y.; Shao, C.-L.; Wang, C.-Y.; Deng, D.-S.; She,
Z.-G.; Lin, Y.-C. Chem. Nat. Compd. 2011, 47, 322.
(19) Gioiello, A.; Venturoni, F.; Marinozzi, M.; Natalini, B.; Pellicciari,
R. J. Org. Chem. 2011, 76, 7431.
(6) (a) Li, P.; Yamamoto, H. J. Am. Chem. Soc. 2009, 131, 16628.
(b) Trost, B. M.; McDougall, P. J.; Hartmann, O.; Wathen, P. T. J. Am.
Chem. Soc. 2008, 130, 14960. (c) Ashenhurst, J. A.; Isakovic, L.; Gleason,
J. L. Tetrahedron 2010, 66, 368. (d) Xie, M.; Liu, X.; Wu, X.; Cai, Y.; Lin,
L.; Feng, X. Angew. Chem., Int. Ed. 2013, 52, 5604. (e) Rivero, A. R.;
́
́
Fernandez, I.; Sierra, M. A. Org. Lett. 2013, 15, 4928.
(7) For a review, see: (a) Banwell, M. G. Aust. J. Chem. 1991, 44, 1. For
recent papers, see: (b) Nair, V.; Sethumadhavan, D.; Nair, S. M.; Rath,
N. P.; Eigendorf, G. K. J. Org. Chem. 2002, 67, 7533. (c) Do, Y.-S.; Sun,
R.; Kim, H. J.; Yeo, J. E.; Bae, S.-H.; Koo, S. J. Org. Chem. 2009, 74, 917.
(d) Williams, Y. D.; Meck, C.; Mohd, N.; Murelli, R. P. J. Org. Chem.
2013, 78, 11707. (e) Harris, R. J.; Widenhoefer, R. A. Angew. Chem., Int.
Ed. 2014, 53, 9369. (f) Shirke, R. P.; Ramasastry, S. S. V. J. Org. Chem.
2015, 80, 4893.
(20) Kim, I.; Kim, K.; Choi, J. J. Org. Chem. 2009, 74, 8492.
(21) (a) Pennell, M. N.; Turner, P. G.; Sheppard, T. D. Chem. - Eur. J.
2012, 18, 4748. (b) Hansmann, M. M.; Hashmi, A. S. K.; Lautens, M.
Org. Lett. 2013, 15, 3226. (c) Yu, Y.; Yang, W.; Pflasterer, D.; Hashmi, A.
̈
S. K. Angew. Chem., Int. Ed. 2014, 53, 1144.
(8) (a) Bartels-Keith, J. R.; Johnson, A. W.; Taylor, W. I. J. Chem. Soc.
1951, 2352. (b) Macdonald, T. L. J. Org. Chem. 1978, 43, 3621.
(c) Evans, D. A.; Tanis, S. P.; Hart, D. J. J. Am. Chem. Soc. 1981, 103,
D
Org. Lett. XXXX, XXX, XXX−XXX