2268
B. Ma et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2264–2269
phorylation. Clearly, (2R,20S)-5 is very efficacious with very good
oral bioavailability and good phosphorylation.
Table 1
Lymphopenia and phosphorylation of 3 and 5a
In summary, a potent, well phosphorylated, orally bioavailable
tetralin analog of FTY720 was identified. Stereochemistry on the
tetralin ring can significantly influence the phosphorylation and
lymphopenia activity, as well as receptor activity. The S1P1 over
S1P3 selectivity of this tetralin series was further improved and
will be described at a later date.
Compounds Mouse
Mouse PK
Phosphorylation Phosphorylation
lymphopenia phosphorylation (mSphK2) %
ED50, mg/kg
(hSphK2) %
%
FTY720
0.03
0.2
3.8
0.1
0.8
>5
—
3
87
4
76
9
(20R)-3
(20S)-3
—
63
—
—
—
—
90
—
—
—
3
(2R,20S)-5
(2R,20R)-5
(2S,20R)-5
(2S,20S)-5
77
38
0
Acknowledgments
>5
0
a
These studies were supported in part by a Grant from the NIH
(R01 GM067958 to K.R.L. and T.L.M.). The authors thank Dr. Doug-
las M. Ho for performing single-crystal X-ray diffraction.
Assay performed as described in the Ref. 19.
Table 2
hS1P1 and S1P3 receptors activation on calcium mobilization Gi assaya
Supplementary data
EC50 (nM)
S1P1
0.027
S1P3
Supplementary data associated with this article can be found, in
S1P
0.449
0.134
>5000
0.215
>5000
0.286
0.150
>5000
>5000
(S)-FTY720-P
(R)-FTY720-P
(20R)-3-P isomer 1
(20R)-3-P isomer 2
(2R,20S)-6
0.012
23.25
0.077
0.344
0.018
0.088
19.72
13.65
References and notes
1. Compston, A.; Coles, A. Lancet 2008, 372, 1502.
2. Hla, T. Pharmacol. Res. 2003, 47, 401.
3. Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.; Sasaki, S.; Toyama, R.; Chiba, K.;
Hoshino, Y.; Okumoto, T. J. Antibiot. 1994, 47, 208.
(2R,20R)-6
(2S,20R)-6
(2S,20S)-6
4. Adachi, K.; Kohara, T.; Nakao, N.; Arita, M.; Chiba, K.; Mishina, T.; Sasaki, S.;
Fujita, T. Bioorg. Med. Chem. Lett. 1995, 5, 853.
a
Assay performed as described in the Ref. 19.
5. Kiuchi, M.; Adachi, K.; Kohara, T.; Minoguchi, M.; Hanano, T.; Aoki, Y.; Mishina,
T.; Arita, M.; Nakao, N.; Ohtsuki, M.; Hoshino, Y.; Teshima, K.; Chiba, K.; Sasaki,
S.; Fujita, T. J. Med. Chem. 2000, 43, 2946.
6. Fujino, M.; Funeshima, N.; Kitazawa, Y.; Kimura, H.; Amemiya, H.; Suzuki, S.; Li,
X. K. J. Pharmacol. Exp. Ther. 2003, 305, 70.
Table 3
hS1P1–S1P5 receptors activation on calcium mobilization Gq assaya
7. Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C. H.; Haas,
T.; Korn, A. A.; Karlsson, G.; Radue, E. W. N. Eng. J. Med. 2006, 355, 1124.
8. O’Connor, P.; Comi, G.; Montalban, X.; Antel, J.; Radue, E. W.; de Vera, A.;
Pohlmann, H.; Kappos, L. Neurology 2009, 72, 73.
9. Novartis. FTY720 FREEDOMS study: initial results. 2009 [cited; Available from:
10. Albert, R.; Hinterding, K.; Brinkmann, V.; Guerini, D.; Hartwieg, C.-M.; Knecht,
H.; Simeon, C.; Streiff, M.; Wagner, T.; Welzenbach, K.; Zecri, F.; Zollinger, M.;
Cooke, N.; Francotte, E. J. Med. Chem. 2005, 48, 5373.
EC50 (nM)
S1P1
S1P2
S1P3
27.84
16.06
18.75
25.72
97.44
38.17
922.10
S1P4
22.16
136.70
5.39
41.45
15.98
—
S1P5
(S)-FTY720-P
(R)-FTY720-P
(20R)-3-P isomer 1
(20R)-3-P isomer 2
(2R,20S)-6
(2R,20R)-6
(2S,20S)-6
2.02
>5000
1.95
133.00
1.79
5.62
>5000
>5000
>5000
>5000
>5000
—
0.36
1988.00
0.33
32.96
1.49
—
—
>5000
—
—
11. Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert, R.; Cottens, S.; Hof, R.; Bruns,
C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C. A.; Zollinger, M.; Lynch, K.
R. J. Biol. Chem. 2002, 277, 21453.
a
Assay performed as described in the Ref. 19.
12. Mandala, S. M.; Hajdu, R.; Bergstrom, J.; Quackenbush, E.; Xie, J.; Milligan, J.;
Thornton, R.; Shei, G.-J.; Card, D.; Keohane, C.; Rosenbach, M.; Hale, J.; Lynch, C.
L.; Rupprecht, K.; Parsons, W.; Rosen, H. Science 2002, 296, 346.
13. Marsolais, D.; Rosen, H. Nat. Rev. Drug Disc. 2009, 8, 297.
14. Forrest, M.; Sun, S. Y.; Hajdu, R.; Bergstrom, J.; Card, D.; Doherty, G.; Hale, J.;
Keohane, C.; Meyers, C.; Milligan, J.; Mills, S.; Nomura, N.; Rosen, H.;
Rosenbach, M.; Shei, G.-J.; Singer, I. I.; Tian, M.; West, S.; White, V.; Xie, J.;
Proia, R. L.; Mandala, S. J. Pharmacol. Exp. Ther. 2004, 309, 758.
15. Gon, Y.; Wood, M. R.; Kiosses, W. B.; Jo, E.; Sanna, M. G.; Chun, J.; Rosen, H. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 9270.
16. Lynch, K. R.; Macdonald, T. L. W.O. Patent 2007092638, 2007; Chem. Abstr.
2007, 147, 235303.
17. Crystallographic details of (2’S)-3 have been deposited at the Cambridge
Crystallographic Data Center and allocated the deposition number CCDC
759847.
FTY720, moderate selectivity of S1P1 over S1P3 was observed for
(2R,20S)-6.
These compounds were investigated further in vivo by measur-
ing their ability to induce mouse lymphopenia (Table 1). Both
(20R)-3 and (20S)-3 induce lymphopenia, the superior activity of
(20R)-3 (ED50 = 0.2 mg/kg) over (20S)-3 (ED50 = 3.8 mg/kg) implies
(20R) configuration is favored in the diol context. Interestingly,
(2S,20R)-5 and (2S,20S)-5 are not active, while (2R, 20S)-5 is very ac-
tive (ED50 = 0.1 mg/kg), and (2R,20R)-5 is less active (ED50 = 0.8 mg/
kg). The favored (20S) configuration in the methyl series is opposite
to the diols, the reason for this is not well understood. Clearly, R
configuration in the aminoalcohol head portion is necessary for
the lymphopenia activity, which is consistent with the observation
of FTY720 analogs AAL-R and AAL-S.11
18. Ma, B.; Lee, W.-C. Tetrahedron Lett. 2010, 51, 385.
19. Lynch, K. R.; Macdonald, T. L.; Guckian, K.; Lin, E. Y. -S.; Ma, B. W.O. Patent
2009023854, 2009; Chem. Abstr. 2009, 150, 259836.
20. Absolute configuration of (+)-(2R,20R)-5 was established by a new synthesis
listed in the following scheme from an intermediate (+)-(R)-4-((R)-6-hydroxy-
1,2,3,4-tetrahydronaphthal-en-2-yl)-4-methyloxazolidin-2-one (25), whose
Both (20R)-3 and (2R,20S)-5 was measured in mouse PK/PD stud-
ies at 10 ꢂ ED50 for both compounds. 2 mg/kg dose of (20R)-3
evokes 72 h sustained lymphopenia, with oral bioavailability of
structure was confirmed by X-ray crystal structure of
a brominated
derivative (unpublished results). The other isomers were assigned by careful
comparison of spectroscopic data.
O
O
55% and half life t = 16 h. Only 3% conversion of (20R)-3 to its phos-
HN
HN
½
b
O
a
O
(+)-(2R,2'R)-5
phate was observed in this study which is consistent with the low
in vitro phosphorylation (4% in mouse in vitro assay, Table 1). The
low conversion to phosphate for compound (20R)-3 and low ED50
(0.2 mg/kg) is unexpected, and we do not understand this discon-
nection. In contrast, 1 mg/kg dose of (2R,20S)-5 evokes one-week
sustained lymphopenia, with oral bioavailability F = 55%,
HO
n-C6H13
26
25
Conditions: (a) Tf2O, py, CH2Cl2, rt; Pd(dppf)Cl2, tBuNH2, i-PrOH, H2O, n-
C6H13CH@CHBF3K, 100 °C; (b). Pd/C, H2, EtOH, rt; LiOH, EtOH, H2O, reflux.
26: 1H NMR (400 MHz,CDCl3) d 7.12 (d, J = 7.8 Hz, 1H), 7.06 (s, 1H), 7.01 (d,
J = 7.9 Hz, 1H), 6.32 (d, J = 15.8 Hz, 1H), 6.18 (dd, J = 6.7, 15.8 Hz, 1H), 4.34
Vmax = 16 L/Kg, Ci = 5.5 ml/min/kg, half life t = 36 h, and 63% phos-
½