Inorg. Chem. 2009, 48, 2358-2360
A Dithiolate-Bridged (CN)2(CO)Fe-Ni Complex Reproducing the IR
Bands of [NiFe] Hydrogenase
Soichiro Tanino, Zilong Li, Yasuhiro Ohki, and Kazuyuki Tatsumi*
Department of Chemistry, Graduate School of Science, and Research Center for Materials
Science, Nagoya UniVersity, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
Received January 6, 2009
Chart 1
A dithiolate-bridged dinuclear Fe-Ni complex, which has the
desired fac-(CN)2(CO) ligand set at iron, has been synthesized.
Its CN/CO bands in the IR spectrum reproduce those of the Ni-A,
Ni-B, and Ni-SU states, which indicate that these octahedral
FeII centers have similar electronic properties. This result verifies
the assignment of a (CN)2(CO)FeII moiety in the active site of [NiFe]
hydrogenase.
in the enzymatic function is not yet well understood.7 On
Hydrogenases are essential for hydrogen metabolisms of
many microorganisms,1 and the crystal structures of [NiFe],
the basis of electron paramagnetic resonance, IR, and
electrochemical measurements, various states of [NiFe]
hydrogenase have been identified as summarized in Chart
1, where the active site consists of a common (CN)2(CO)Fe
moiety linked to a Ni atom by two cysteinyl thiolate bridges.
[FeFe], and [Fe] hydrogenases have been determined.2-4
A
unique feature of the [NiFe] hydrogenase is that the Fe center
carries CO and CN ligands,5,6 while the role of these ligands
In the course of our studies of structural and functional
models of the active sites of [NiFe] hydrogenase,8 we have
reported the syntheses of (PPh4)[(CN)2(CO)2Fe(µ-pdt)Ni-
* To whom correspondence should be addressed. E-mail: i45100a@
nucc.cc.nagoya-u.ac.jp.
(1) For recent reviews, see: (a) Fontecilla-Camps, J. C.; Volbeda, A.;
Cavazza, C.; Nicolet, Y. Chem. ReV. 2007, 107, 4273–4303. (b) De
Lacey, A. L.; Ferna´ndez, V. M.; Rousset, M.; Cammack, R. Chem.
ReV. 2007, 107, 4304–4330. (c) Lubitz, W.; Reijerse, E.; van Gastel,
M. Chem. ReV. 2007, 107, 4331–4365. (d) Vincent, K. A.; Parkin,
A.; Armstrong, F. A. Chem. ReV. 2007, 107, 4366–4413.
(2) For example, see: (a) Volbeda, A.; Charon, M.-H.; Piras, C.;
Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995,
373, 580–587. (b) Volbeda, A.; Garcin, E.; Piras, C.; De Lacey, A. L.;
Ferna´ndez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C.
J. Am. Chem. Soc. 1996, 118, 12989–12996. (c) Higuchi, Y.; Yagi,
T.; Yasuoka, N. Structure 1997, 5, 1671–1680.
(3) For example, see: (a) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.;
Seefeldt, L. C. Science 1998, 282, 1853–1858. (b) Nicolet, Y.; De
Lacey, A. L.; Vernède, X.; Ferna´ndez, V. M.; Hatchikian, C. E.;
Fontecilla-Camps, J. C. J. Am. Chem. Soc. 2001, 123, 1596–1601.
(4) Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-
Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. Science 2008,
321, 572–575.
(S2CNR2)] [1; pdt ) 1,3-propanedithiolate, S2CNR2
)
dithiocarbamates (R ) Et, R2 ) -(CH2)5-)]8a and a series
of bis- and tris(thiolate)-bridged Fe(CO)3Ni complexes.8c
Other dinuclear Fe-Ni model complexes previously reported,
which have ligand sets such as aminethiolates, phosphines,
η5-C5H5, or nitric oxide, match the enzyme active sites less
well compared with those in this report.9 Although the model
complexes 1 are unique in that they possess the crucial CO/
CN ligand set on iron, the number of CO ligands differs
from that found in the enzyme active sites. This paper
describes the synthesis of a thiolate-bridged (CN)2(CO)-
Fe-Ni complex, [(CN)2(CO)Fe(µ-tpdt)Ni(S2CNEt2)]- (2;
(5) (a) Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P. J.;
Bagley, K. A. Nature 1997, 385, 126. (b) De Lacey, A. L.; Hatchikian,
E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C.; Ferna´ndez,
V. M. J. Am. Chem. Soc. 1997, 119, 7181–7189. (c) Pierik, A. J.;
Roseboom, W.; Happe, R. P.; Bagley, K. A.; Albracht, S. P. J. J. Biol.
Chem. 1999, 274, 3331–3337. (d) Bleijlevens, B.; van Broekhuizen,
F. A.; De Lacey, A. L.; Roseboom, W.; Ferna´ndez, V. M.; Albracht,
S. P. J. J. Biol. Inorg. Chem. 2004, 9, 743–752. (e) Fichtner, C.;
Laurich, C.; Bothe, E.; Lubitz, W. Biochemistry 2006, 45, 9706–9716.
(6) (a) van der Spek, T. M.; Arendsen, A. F.; Happe, R. P.; Suyong, Y.;
Bargley, K. A.; Stufkens, D. J.; Hagen, W. R.; Albracht, S. P. J. Eur.
J. Biochem. 1996, 237, 629–634. (b) Roseboom, W.; De Lacey, A. L.;
Ferna´ndez, V. M.; Hatchikian, E. C.; Albracht, S. P. J. J. Biol. Inorg.
Chem. 2006, 11, 102–118.
(7) (a) Nicolet, Y.; Lemon, B. J.; Fontecilla-Camps, J. C.; Peters, J. W.
Trends Biochem. Sci. 2000, 25, 138–143. (b) Frey, M. ChemBioChem
2002, 3, 153–160.
(8) (a) Li, Z.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2005, 127, 8950–
8951. (b) Matsumoto, T.; Nakaya, Y.; Tatsumi, K. Organometallics
2006, 25, 4835–4845. (c) Ohki, Y.; Yasumura, K.; Kuge, K.; Tanino,
S.; Ando, M.; Li, Z.; Tatsumi, K. Proc. Natl. Acad. Sci. U.S.A. 2008,
105, 7652–7657. (d) Matsumoto, T.; Nakaya, Y.; Tatsumi, K. Angew.
Chem., Int. Ed. 2008, 47, 1913–1915. (e) Matsumoto, T.; Nakaya,
Y.; Itakura, N.; Tatsumi, K. J. Am. Chem. Soc. 2008, 130, 2458–
2459. (f) Ohki, Y.; Sakamoto, M.; Tatsumi, K. J. Am. Chem. Soc.
2008, 130, 11610–11611. (g) Pal, S.; Ohki, Y.; Yoshikawa, I.; Kuge,
K.; Tatsumi, K. Chem. Asian. J. 2009, in press.
2358 Inorganic Chemistry, Vol. 48, No. 6, 2009
10.1021/ic900017s CCC: $40.75 2009 American Chemical Society
Published on Web 02/17/2009