Journal of the American Chemical Society
Article
ORCID
Aromatic interactions appear to be important for achieving
high levels of enantio- and diastereoselectivity as evidenced by
the inferior results using the benzyl-substituted catalyst D.
Finally, considering the sterically encumbered nature of the
tertiary alcohol installed in the arylation reaction, we wondered
if this functionality could be leveraged in downstream
transformations. Preliminary findings have been promising.
For instance, unsaturated alcohol 3v undergoes iodoether-
ification to tetrahydrofuran 4v in 66% yield albeit without
diastereoselectivity (Scheme 3). The diastereomers of 4v were
easily separated by silica gel column chromatography.
Notes
The authors declare no competing financial interest.
CCDC 1502349, CCDC 1502350, and CCDC 1529845
contain the supplementary crystallographic data for this
paper. This data can be obtained free of charge from the
ACKNOWLEDGMENTS
■
The project described was supported by Awards R01
GM103855 and R35 GM118055 from the National Institute
of General Medical Sciences. K.M.K. gratefully acknowledges
support from the Matthew Neely Jackson Undergraduate
Research Fellowship. X-ray crystallography was performed by
Dr. Peter White.
Scheme 3. Iodoetherification of 3v
REFERENCES
■
(1) Reviews on dynamic kinetic resolution: (a) Caddick, S.; Jenkins,
K. Chem. Soc. Rev. 1996, 25, 447−456. (b) Huerta, F. F.; Minidis, A. B.
E.; Backvall, J. E. Chem. Soc. Rev. 2001, 30, 321−331. (c) Pellissier, H.
̈
Tetrahedron 2003, 59, 8291−8327. (c) Pellissier, H. Tetrahedron 2011,
67, 3769−3802. (d) Bhat, V.; Welin, E. R.; Guo, X.; Stoltz, B. M.
CONCLUSION
■
(2) For select literature examples, see: (a) Kitamura, M.; Tokunaga,
M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, 144−152. (b) Noyori, R.;
Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36−55.
(c) Eustache, F.; Dalko, P. I.; Cossy, J. Org. Lett. 2002, 4, 1263−1265.
In summary, we have developed an enantioconvergent arylation
of racemic β-alkyl-substituted α-keto esters catalyzed by a chiral
rhodium-diene complex. A wide range of complex aryl glycolate
derivatives could be obtained in good yields with high levels of
stereocontrol. Notably, despite the longstanding use of
transition metal catalysts in dynamic kinetic hydrogenations,
the title reaction is a rare case of installing C−C bonds in
dynamic kinetic additions to carbonyl electrophiles. With
consideration of the substantial number of commercially
available arylboronic acid derivatives and the well-recognized
biological activity of the glycolic acid substructure,18 this
chemistry opens the door to a diverse array of interesting
building blocks. Although racemization rate is central to
efficient dynamic kinetic resolutions,9 it is rarely discussed or
studied in detail; here, we have shown that the racemization of
less acidic β-alkyl/aryl-substituted α-keto esters is strongly
linked to the steric size of a tertiary amine additive. Preliminary
results show that the products of this reaction can be utilized in
additional downstream transformations including the synthesis
of valuable tetrahydrofuran derivatives. Extension of this work
to other classes of nonstabilized carbon centered nucleophiles is
currently underway in our laboratory and will be reported in
due course.
(d) Ros, A.; Magriz, A.; Dietrich, H.; Lassaletta, J. M.; Fernan
Tetrahedron 2007, 63, 7532−7537. (e) Ros, A.; Magriz, A.; Dietrich,
H.; Ford, M.; Fernandez, R.; Lassaletta, J. M. Adv. Synth. Catal. 2005,
́
dez, R.
́
347, 1917−1920. (f) Ding, Z.; Yang, J.; Wang, T.; Shen, Z.; Zhang, Y.
Chem. Commun. 2009, 571−573. (g) Huang, X.-F.; Zhang, S.-Y.; Geng,
Z.-C.; Kwok, C.-Y.; Liu, P.; Li, H.-Y.; Wang, X.-W. Adv. Synth. Catal.
2013, 355, 2860−2872. (h) Cheng, T.; Ye, Q.; Zhao, Q.; Liu, G. Org.
Lett. 2015, 17, 4972−4975. (i) Son, S.-M.; Lee, H.-K. J. Org. Chem.
2014, 79, 2666−2681. (j) Cartigny, D.; Puntener, K.; Ayad, T.;
̈
Scalone, M.; Ratovelomanana-Vidal, V. Org. Lett. 2010, 12, 3788−
3791. (k) Steward, K. M.; Gentry, E. C.; Johnson, J. S. J. Am. Chem.
Soc. 2012, 134, 7329−7332. (l) Steward, K. M.; Corbett, M. T.;
Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 20197−
20206. (m) Corbett, M. T.; Johnson, J. S. J. Am. Chem. Soc. 2013, 135,
594−597. (n) Goodman, C. G.; Do, D. T.; Johnson, J. S. Org. Lett.
2013, 15, 2446−2449. (0) Bao, D.-H.; Gu, S.-H.; Xie, J.-H.; Zhou, Q.-
L. Org. Lett. 2017, 19, 118−121.
(3) Known examples: (a) Corbett, M. T.; Johnson, J. S. Angew.
Chem., Int. Ed. 2014, 53, 255−259. (b) Goodman, C. G.; Johnson, J. S.
J. Am. Chem. Soc. 2014, 136, 14698−14701. (c) Goodman, C. G.;
Walker, M. M.; Johnson, J. S. J. Am. Chem. Soc. 2015, 137, 122−125.
(d) Cohen, D. T.; Eichman, C. C.; Phillips, E. M.; Zarefsky, E. R.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 7309−7313. (e) Ward,
D. E.; Jheengut, V.; Akinnusi, O. T. Org. Lett. 2005, 7, 1181−1184.
(f) Bergeron-Brlek, M.; Teoh, T.; Britton, R. Org. Lett. 2013, 15,
3554−3557. (g) Yang, J.; Wang, T.; Ding, Z.; Shen, Z.; Zhang, Y. Org.
Biomol. Chem. 2009, 7, 2208−2213. (h) Calter, M. A.; Phillips, R. M.;
Flaschenriem, C. J. Am. Chem. Soc. 2005, 127, 14566−14567.
(i) Calter, M.; Li, N. Org. Lett. 2011, 13, 3686−3689. (j) Wu, Z.;
Li, F.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 1629−1633.
(4) (a) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998,
37, 3279−3281. (b) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.;
Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579−5580. (c) Tian, P.;
Dong, H.-Q.; Lin, G.-Q. ACS Catal. 2012, 2, 95−119.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Crystallographic data for C22H21O3Br (CIF)
Crystallographic data for C46H24Cl2F24Rh2 (CIF)
Crystallographic data for C42H28Cl2F12Rh2 (CIF)
Experimental procedures, and spectral and analytical data
(5) (a) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L.
Angew. Chem., Int. Ed. 2008, 47, 4351−4353. (b) Cai, F.; Pu, X.; Qi, X.;
Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133,
18066−18069. (c) Yamamoto, Y.; Shirai, T.; Watanabe, M.; Kurihara,
AUTHOR INFORMATION
Corresponding Author
■
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX