ORGANIC
LETTERS
2009
Vol. 11, No. 5
1187-1190
Synthesis of 3-Haloindolizines by
Copper(II) Halide Mediated Direct
Functionalization of Indolizines
Ji-Bao Xia and Shu-Li You*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
Received January 15, 2009
ABSTRACT
3-Haloindolizines were synthesized via Cu(II) halide mediated halogenation of indolizines. This C-H direct functionalization process occurred
under mild conditions giving 3-haloindolizines in moderate to excellent yields, and the products obtained were tested under the Suzuki-Miyaura
reaction providing 3-arylindolizines in high yields.
Indolizines are important N-fused heterocycles broadly found
in biologically important natural products and synthetic
pharmaceuticals.1 Accordingly, synthesis and functionaliza-
tion of indolizines have attracted considerable attention over
the decades.2 The 3-haloindolizines are particularly attractive
since their analogues have been used as biologically interest-
ing compounds3 and their important role as the synthetic
intermediates for 3-substituted indolizines is also apparent.
In addition, transition-metal-catalyzed cross-coupling reac-
tions would allow the installation of carbon-carbon and
carbon-heteroatom bonds regioselectively upon the avail-
ability of 3-haloindolizines. Therefore, efforts toward the
synthesis of 3-haloindolizines have been underway for a long
time. For instance, reaction of pyridines with tetrachlorocy-
clopropene could lead to the formation of 3-chloroindolizines,
but together with problematically separable 1,3-dichloroin-
dolizines.4 The reaction of dichlorocarbene with pyridines
also led to 3-chloroindolizines but generally with low yields.5
3-Haloindolizines were also synthesized by the treatment of
indolizines with Br2/acetic acid, NOCl/acetic acid, or NCS/
acetic acid; however, a mixture of mono- and dihalosubsti-
tuted products was given in low yields.6 Despite the
significance of 3-haloindolizines and many attempts so far,
the efficient synthesis of 3-haloindolizines has not been
documented yet.
(2) For reviews, see: (a) Uchida, T.; Matsumoto, K. Synthesis 1976,
209. (b) Behnisch, A.; Behnisch, P.; Eggenweiler, M.; Wallenhorst, T.
Indolizine. In Houben-Weyl; Thieme: Stuttgart, Germany, 1994; Vol. E6b/
1, 2a, pp 323-450. For recent examples, see: (c) Shen, Y.-M.; Grampp,
G.; Leesakul, N.; Hu, H.-W.; Xu, J.-H. Eur. J. Org. Chem. 2007, 3718. (d)
Surpateanu, G. G.; Landy, D.; Lungu, N. C.; Fourmentin, S.; Surpateanu,
G. J. Heterocycl. Chem. 2007, 44, 783. (e) Schwier, T.; Sromek, A. W.;
Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007,
129, 9868. (f) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett.
2007, 9, 3433. (g) Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323. (h) Chuprakov,
S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463. (i) Hardin, A. R.; Sarpong, R.
Org. Lett. 2007, 9, 4547. (j) Yan, B.; Zhou, Y.; Zhang, H.; Chen, J.; Liu,
Y. J. Org. Chem. 2007, 72, 7783. (k) Przewloka, T.; Chen, S.; Xia, Z.; Li,
H.; Zhang, S.; Chimmanamada, D.; Kostik, E.; James, D.; Koya, K.; Sun,
L. Tetrahedron Lett. 2007, 48, 5739. (l) Kim, I.; Choi, J.; Won, H. K.;
Lee, G. H. Tetrahedron Lett. 2007, 48, 6863. (m) Guazzelli, G.; Settambolo,
R. Tetrahedron Lett. 2007, 48, 6034. (n) Kuznetsov, A. G.; Bush, A. A.;
Babaev, E. V. Tetrahedron 2008, 64, 749. (o) Niyomura, O.; Yamaguchi,
Y.; Sakao, R.; Minoura, M.; Okamoto, Y. Heterocycles 2008, 75, 297. (p)
Chernyak, D.; Gadamsetty, S. B.; Gevorgyan, V. Org. Lett. 2008, 10, 2307.
(1) For reviews, see: (a) Michael, J. P. Alkaloids 2001, 55, 91. (b)
Michael, J. P. Nat. Prod. Rep. 2007, 24, 191. (c) Michael, J. P. Nat. Prod.
Rep. 2008, 25, 139. For selected examples, see: (d) Molyneux, R. J.; James,
L. F. Science 1982, 216, 190. (e) Hagishita, S.; Yamada, M.; Shirahase,
K.; Okada, T.; Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.;
Ueno, M.; Chikazawa, Y.; Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M.
J. Med. Chem. 1996, 39, 3636. (f) Millet, R.; Domarkas, J.; Rigo, B.;
Goossens, L.; Goossens, J.-F.; Houssin, R.; He´nichart, J.-P. Bioorg. Med.
Chem. 2002, 10, 2905. (g) Weide, T.; Arve, L.; Prinz, H.; Waldmann, H.;
Kessler, H. Bioorg. Med. Chem. Lett. 2006, 16, 59. (h) James, D. A.; Koya,
K.; Li, H.; Liang, G.; Xia, Z.; Ying, W.; Wu, Y.; Sun, L. Bioorg. Med.
Chem. Lett. 2008, 18, 1784. (i) Oslund, R. C.; Cermark, N.; Gelb, M. H.
J. Med. Chem. 2008, 51, 4708. (j) Beck, E. M.; Hatley, R.; Gaunt, M. J.
Angew. Chem., Int. Ed. 2008, 47, 3004.
10.1021/ol9000872 CCC: $40.75
Published on Web 02/12/2009
2009 American Chemical Society