J Biol Inorg Chem
(2014) Copper pathology in vulnerable brain regions in Parkin-
son’s disease. Neurobiol Aging 35:858–866
of the highly stable human γ-D crystallin. ACS Chem Biol
11:263–272
4. Bonda DJ, Lee HG, Blair JA, Zhu X, Perry G, Smith MA (2011)
Role of metal dyshomeostasis in Alzheimer disease. Metallomics
3:267–270
5. Hureau C, Faller P (2009) Aβ-mediated ROS production by Cu
ions: structural insights, mechanisms and relevance to Alzhei-
mer’s disease. Biochimie 91:1212–1217
6. Mayes J, Mill CT, Kolosov O, Zhang H, Tabner BJ, Allsop D
(2014) β-amyloid fibrils in Alzheimer’s disease are not inert
when bound to copper ions but can degrade hydrogen per-
oxide and generate reactive oxygen species. J Biol Chem
289:12052–12062
7. Zhu X, Su B, Wang X, Smith MA, Perry G (2007) Causes
of oxidative stress in Alzheimer disease cell. Mol Life Sci
64:2202–2210
8. Eskici G, Axelsen PH (2012) Copper and oxidative stress
in the pathogenesis of Alzheimer’s disease. Biochemistry
51:6289–6311
9. Garland D (1990) Role of site-specific, metal-catalyzed oxi-
dation in lens aging and cataract: a hypothesis. Exp Eye Res
50:677–682
24. Grossi C, Francese S, Casini A, Rosi MC, Luccarini I, Fioren-
tini A, Gabbiani C, Messori L, Moneti G, Casamenti F (2009)
Clioquinol decreases amyloid-β burden and reduces working
memory impairment in a transgenic mouse model of Alzheimer’s
disease. J Alzheimers Dis 17:423–440
25. Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeo-
stasis and oxidative stress in Alzheimer’s disease. Neurochem Int
62:540–555
26. Oliveri V, Attanasio F, Puglisi A, Spencer J, Sgarlata C, Vecchio
G (2014) Multifunctional 8-hydroxyquinoline-appended cyclo-
dextrins as new inhibitors of metal-induced protein aggregation.
Chem Eur J 20:8954–8964
27. Choi J, Braymer JJ, Nanga RPR, Ramamoorthy A, Lim MH
(2010) Design of small molecules that target metal-Aβ species
and regulate metal-induced Aβ aggregation and neurotoxicity.
Proc Natl Acad Sci 107:21990–21995
28. Sharma AK, Pavlova ST, Kim J, Finkelstein D, Hawco NJ, Rath
NP, Kim J, Mirica LM (2012) Bifunctional compounds for con-
trolling metal-mediated aggregation of the Aβ42 peptide. J Am
Chem Soc 134:6625–6636
10. Atalay A, Ogus A, Bateman O, Slingsby C (1998) Vitamin C
induced oxidation of eye lens gamma crystallins. Biochimie
80:283–288
11. Garner B, Roberg K, Qian M, Brunk UT, Eaton JW, Truscott
RJW (1999) Redox availability of lens iron and copper: implica-
tions for HO· generation in cataract. Redox Rep 4:313–315
12. Padgaonkar VA, Leverenz VR, Fowler KE, Reddy VN (2000)
The effects of hyperbaric oxygen on the crystallins of cultured
rabbit lenses: a possible catalytic role for copper. Exp Eye Res
71:371–383
13. Ortwerth BJ, James HL (1999) Lens proteins block the copper-
mediated formation of reactive oxygen species during glycation
reactions in vitro. Biochem Biophys Res Commun 259:706–710
14. Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B,
Rao CM (2008) Selective Cu2+ binding, redox silencing, and
cytoprotective effects of the small heat shock proteins αA- and
αB-crystallin. J Mol Biol 38:2812–2824
15. Ganadu ML, Aru M, Mura GM, Coi A, Mlynarz P, Kozlowski
H (2004) Effects of divalent metal ions on the alphaB-crystallin
chaperone-like activity: spectroscopic evidence for a complex
between copper (II) and protein. J Inorg Biochem 98:1103–1109
16. Biswas A, Das KP (2008) Zn2+ enhances the molecular chap-
erone function and stability of alpha-crystallin. Biochemistry
47:804–816
29. Gomes LMF, Vieira RP, Jones MR, Wang MCP, Dyrager C,
Souza-Fagundes EM, Da JG, SilvaStorr T, Beraldo H (2014)
8-hydroxyquinoline Schiff-base compounds as antioxidants and
modulators of copper-mediated Aβ peptide aggregation. J Inorg
Biochem 139:106–116
30. Bareggi SR, Cornelli U (2012) Clioquinol: review of its mecha-
nisms of action and clinical uses in neurodegenerative disorders.
CNS Neurosci Ther 18:41–46
31. Cherny RA, Ayton S, Finkelstein DI, Bush AI, McColl G, Massa
SM (2012) PBT2 reduces toxicity in a C. elegans model of
polyQ aggregation and extends lifespan, reduces striatal atrophy
and improves motor performance in the R6/2 mouse model of
Huntington’s disease. J Huntingtons Dis 1:211–219
32. Kumar BD, Rawat DS (2013) Synthesis and antioxidant activity
of thymol and carvacrol based Schiff bases. Bioorg Med Chem
Lett 23:641–645
33. Li C, Xu X, Wang XJ, Pan Y (2014) Imine resveratrol analogues:
molecular design, Nrf2 activation and SAR analysis. PLoS One
9:e101455
34. Huber D, Andermann G, Leclerc G (1988) Selective reduction
of aromatic/aliphatic nitro groups by sodium sulfide. Tetrahedron
Lett 29:635–638
35. Leleu S, Papamicae C, Marsais F, Dupas G, Levacher V (2004)
Preparation of axially chiral quinolinium salts related to NAD+
models: new investigations of these biomimetic models as
‘chiral amide-transferring agents. Tetrahedron Asymmetry
15:3919–3928
36. Benesi HA, Hildebrand JH (1949) A spectrophotometric investi-
gation of the interaction of iodine with aromatic hydrocarbons. J
Am Chem Soc 71:2703–2707
17. Horwitz J (1992) α-Crystallin can function as a molecular chap-
erone. Proc Natl Acad Sci 89:10449–10453
18. Sampson LA, King J (2010) Partially folded aggregation inter-
mediates of human γD-, γC-, and γS-crystallin are recognized
and bound by human αB-crystallin chaperone. J Mol Biol
401:134–152
37. Kao S, Lin W, Venkatesan P, Wu S (2014) Colorimetric detection
of Cu(II): Cu(II)-induced deprotonation of NH responsible for
color change. Sens Actuators B 204:688–693
38. Kim KB, Park GJ, Kim H, Song EJ, Bae JM, Kim C (2014) A
novel colorimetric chemosensor for multiple target ions in aque-
ous solution: simultaneous detection of Mn(II) and Fe(II). Inorg
Chem Commun 46:237–240
19. Ghosh KS, Pande A, Pande J (2011) Binding of γ-crystallin sub-
strate prevents the binding of copper and zinc ions to the molec-
ular chaperone α-crystallin. Biochemistry 50:3279–3281
20. Rasi V, Costantini S, Moramarco A, Giordano R, Giustolisi R,
Gabrieli CB (1992) Inorganic element concentrations in catarac-
tous human lenses. Ann Ophthalmol 24:459–464
21. Srivastava VK, Varshney N, Pandey DC (1992) Role of trace ele-
ments in senile cataract. Acta Ophthalmol 70:839–841
22. Cekic O (1998) Effect of cigarette smoking on copper, lead,
and cadmium accumulation in human lens. Br J Ophthalmol
82:186–188
39. Goswami S, Aich K, Das S, Das AK, Manna A, Halder S
(2013) A highly selective and sensitive probe for colorimetric
and fluorogenic detection of Cd2+
in aqueous media. Analyst
138:1903–1907
23. Quintanar L, Domínguez-Calva JA, Serebryany E, Rivillas-
Acevedo L, Haase-Pettingell C, Amero C, King JA (2016) Cop-
per and zinc ions specifically promote nonamyloid aggregation
40. Ghule NV, Bhosale RS, Puyad AL, Bhosale SV, Bhosale SV
(2016) Naphthalenediimide amphiphile based colorimetric
1 3