Terent’ev et al.
noticeable cleavage of the peroxide bond.11 The CdO group in
artemisinin was transformed into the CH2 group with the use
of diborane, which was prepared by the one-pot method from
NaBH4-BF3 ·Et2O,12 and by successive reduction with DIBAL-H
and Et3SiH-BF3 ·Et2O.13 The ester group in the side chain of
artemisinin derivatives was selectively reduced to the aldehyde
and alcoholic group with the use of DIBAL-H.14a In addition,
the reduction of acrylic ester with DIBAL-H proceeded with
high selectivity and afforded allylic alcohol, the O-O bond of
the monoperoxyketal fragment in the polyfunctional molecule
remaining intact.14b
SCHEME 1. Reduction of 1,2,4,5,7,8-Hexaoxa-3-silonanes
1-4 Giving Rise to 1,3,5,6-Tetraoxa-2-silepanes 5-8
The selective reduction of functional groups (without reducing
the peroxide fragment) was performed with the use of LiAlH
(OBut)3,15 LiAlH4,16 and LiBH4.17 The reduction of the ester
group to the alcoholic group without reducing the 1,2-dioxane
ring in the presence of lithium aluminum hydride and lithium
borohydride was studied in detail.18 The soft and selective
reduction was found to proceed in the presence of LiBH4.
As opposed to the reduction of organic peroxides, the
reduction of organosilicon peroxides containing SiOOC20 and
SiOOSi fragments20c-e,21 was studied in much less detail. These
peroxides were reduced with the use of trialkyl- and triph-
enylphosphines as reducing agents. For example, the SiOOC
fragment was transformed into SiOC by the reaction of
norbornanone peroxysilyl ether, which was prepared by the
reaction of singlet oxygen with norbornene silyl ether, with
PPh3.20a,b Analogously, the corresponding alcohol, viz., 2-hy-
droxy-5-methoxy-2-methylindan-1-one, was synthesized from
2-(tert-butyldimethylsilylperoxy)-5-methoxyindan-1-one.20c tert-
Butyl trimethylsilyl peroxide was transformed into tert-butyl
trimethylsilyl ether by the reaction with triisopropylphosphine.20d
The reduction of SiOOC with Me3P was the key step in the
synthesis of optically active triols from the ozonolysis products
of γ-silyl allylic alcohol and their ethers.20e
The ester and azido groups were successfully reduced to the
hydroxyl and amino groups, respectively, with LiAlH4 in the
synthesis of peroxide structures having high antimalarial activity;
in these reactions the 1,2,4,5-tetraoxane ring remained intact.19
(3) (a) Adam, W.; Cueto, O.; De Lucchi, O.; Peters, K.; Peters, E.-M.; von
Schnering, H. G. J. Am. Chem. Soc. 1981, 103, 5822–5828. (b) Akbulut, N.;
Balci, M. J.Org. Chem. 1988, 53, 3338–3342. (c) Cope, A. C.; Liss, T. A.; Wood,
G. W. J. Am. Chem. Soc. 1957, 79, 6287–6292. (d) Rigaudy, J. Bull. Soc. Chim.
Fr. 1971, 144-152. (e) Gollnick, K.; Griesbeck, A. Tetrahedron Lett. 1983,
24-32, 3303–3306. (f) Xu, X.-X.; Dong, H.-Q. J. Org. Chem. 1995, 60, 3039–
3044.
(4) (a) Spivey, A. C.; Man˜as, C. G.; Mann, I. Chem. Commun. 2005, 4426–
4428. (b) Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. J. Org. Chem. 1990, 55,
4683–4687. (c) Pearson, A. J.; Lai, Y.-S.; Lu, W.; Pinkerton, A. A. J. Org.
Chem. 1989, 54, 3882–3893. (d) Su¨tbeyaz, Y.; Sec¸en, H.; Balci, M. J. Chem.
Soc., Chem. Commun. 1988, 133, 0–1331.
(5) (a) Keana, J. F. W.; Eckler, P. E. J. Org. Chem. 1976, 41, 2625–2627.
(b) Mueller, P.; Rodriguez, D. HelV. Chim. Acta 1985, 68, 975–980.
(6) Lipner, H.; Witherspoon, L. R.; Champeaux, V. C. Anal. Chem. 1964,
36, 194–204.
(7) Suzuki, M.; Oda, Y.; Hamanaka, N.; Noyori, R. Heterocycles 1990, 30,
517–535.
(8) Bis, S. J.; Whitaker, D. T.; Johnson, C. R. Tetrahedron: Asymmetry 1993,
4, 875–878.
(9) Oger, C.; Brinkmann, Y.; Bouazzaoui, S.; Durand, T.; Galano, J.-M. Org.
Lett. 2008, 10, 5087-5090.
(10) (a) Liu, J.-M.; Ni, M.-Y.; Tu, A.-A.; Wu, Z.-H.; Wu, Y.-L.; Zhou, W. S.
(Hua Hsueh Hsueh Pao) Hua Xue Xue Bao (now often translated) Acta Chim
Sinica 1979, 37, 129-143; Chem. Abstr. 1979, 92, 94594. (b) Li, Y.; Wu, Y.-L.
Curr. Med. Chem. 2003, 10, 2197–2230.
(11) Wu, Y.-L.; Zhang, J.-L. You Ji Hua Xue (now often translated) Chin.
J. Org. Chem. 1986, 15, 4-156; Chem. Abstr. 1986, 105, 191426n.
(12) Jung, M.; Li, X.; Bustos, D. A.; ElSohly, H. N.; McChesney, J. D.;
Milhous, W. K. J. Med. Chem. 1990, 33, 1516–1518.
Results and Discussion
In the present study, the reduction of peroxides containing
simultaneously the COOC and SiOOC fragments was carried
out for the first time. The conditions were found under which
it is possible to perform the transformation 2SiOOC f 2SiOC
in cyclic peroxides, 1,2,4,5,7,8-hexaoxa-3-silonanes 1-4, with
the use of certain reducing agents, the COOC fragment and other
structural fragments of the molecules remaining intact. Nine-
membered triperoxides 1-4 are transformed into the previously
unknown seven-membered monoperoxides, 1,3,5,6-tetraoxa-2-
silepanes 5-8 (Scheme 1).
In the first step of the study, we chose the conditions and
reducing agents for the selective transformation of nine-
membered peroxides into seven-membered peroxides using the
reduction of 4a into 8a as an example. Then we examined the
applicability of these conditions to related peroxides 1-4, which
(13) (a) Avery, M. A.; Mehrotra, S.; Johnson, T. L.; Bonk, J. D.; Vroman,
J. A.; Miller, R. J. Med. Chem. 1996, 39, 4149–4155. (b) Avery, M. A.; Alvim-
Gaston, M.; Vroman, J. A.; Wu, B.; Ager, A.; Peters, W.; Robinson, B.; Charman,
W. J. Med. Chem. 2002, 45, 4321–4335.
(14) (a) Mekonnen, B.; Weiss, E.; Katz, E.; Ma, J.; Ziffer, H.; Kyle, D. E.
Bioorg. Med. Chem. 2000, 8, 1111–1116. (b) Porter, N. A.; Caldwell, S. E.;
Lowe, J. R. J. Org. Chem. 1998, 63, 5547–5554.
(15) (a) Stierle, D. B.; Faulkner, D. J. J. Org. Chem. 1980, 45, 3396–3401.
(b) Kobayashi, M.; Kondo, K.; Kitagawa, I. Chem. Pharm. Bull. 1993, 41, 1324–
1326.
(16) (a) Muellner, U.; Huefnerm, A.; Haslinger, E. Tetrahedron 2000, 56,
3893–3900. (b) Quin˜oa`, E.; Kho, E.; Manes, L. V.; Crews, P.; Bakus, G. J. J.
Org. Chem. 1986, 51, 4260–4264. (c) Dussault, P.; Sahli, A.; Westermeyer, T.
J. Org. Chem. 1993, 58, 5469–5474.
(20) (a) Jefford, C. W.; Rimbault, C. G. J. Am. Chem. Soc. 1978, 100, 6437–
6445. (b) Jefford, C. W.; Rimbault, C. G. Tetrahedron Lett. 1977, 27, 2375–
2378. (c) Einaga, H.; Nojima, M.; Abe, M. J. Chem. Soc., Perkin Trans. 1, 1999,
2507-2512. (d) Gorbatov, V. V.; Yablokova, N. V.; Aleksandrov, Yu. A.;
Ivanov, V. I. Zh. Obshch. Khim. 1983, 53, 1752-1755; J. Gen. Chem. USSR
(Engl. Transl.) 1983, 53, 1576-1578. (e) Murakami, M.; Sakita, K.; Igawa, K.;
Tomooka, K. Org. Lett. 2006, 8, 4023–4026.
(21) (a) Brandes, D.; Blaschette, A. J. Organomet. Chem. 1974, 78, 1–48.
(b) Ando, W.; Kako, M.; Akasaka, T.; Kabe, Y. Tetrahedron Lett. 1990, 31,
4177–4180. (c) Ando, W.; Kako, M.; Akasaka, T.; Nagase, S.; Kawai, T.; Nagai,
Y.; Sato, T. Tetrahedron Lett. 1989, 30, 6705–6708. (d) Akasaka, T.; Sato, K.;
Kako, M.; Ando, W. Tetrahedron 1992, 48, 3283–3292. (e) Adam, W.; Albert,
R. Tetrahedron Lett. 1992, 33, 8015–8016. (f) Wiberg, N.; Preiner, G.; Schurz,
K. Chem. Ber. 1988, 121, 1407–1412. (g) Zheng, J.-Y.; Konishi, K.; Aida, T.
Chem. Lett. 1998, 5, 453–454. (h) Dussault, P. H.; Lee, R. J.; Schultz, J. A.;
Suh, Y. S. Tetrahedron Lett. 2000, 41, 5457–5460. (i) Tamao, K.; Kumada, M.;
Takahashi, T. J. Organomet. Chem. 1975, 94, 367–376. (j) Brandes, D.;
Blaschette, A. J. Organomet. Chem. 1974, 73, 217–227. (k) Brandes, D.;
Blaschette, A. J. Organomet. Chem. 1973, 49, C6. (l) Akasaka, T.; Sato, K.;
Kako, M.; Ando, W. Tetrahedron Lett. 1991, 32, 6605–6608.
(17) (a) Tang, Y.; Dong, Y.; Karle, J. M.; DiTusa, C. A.; Vennerstrom, J. L.
J. Org. Chem. 2004, 69, 6470–6473. (b) Xu, X.-X.; Zhu, J.; Huang, D.-Z.; Zhou,
W.-S. Tetrahedron Lett. 1991, 32, 5785–5788.
(18) Jin, H.-X.; Liu, H.-H.; Zhang, Q.; Wu, Y. J. Org. Chem. 2005, 70, 4240–
4247.
ˇ
(19) Opsenica, I.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; Solaja, B. A.
J. Med. Chem. 2008, 51, 2261–2266.
1918 J. Org. Chem. Vol. 74, No. 5, 2009