Organic Letters
Letter
11726. (l) Topczewski, J. J.; Sanford, M. S. Chem. Sci. 2015, 6, 70.
(m) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J.
Chem. Soc. Rev. 2016, 45, 2900. (n) Nareddy, P.; Jordan, F.; Szostak,
M. ACS Catal. 2017, 7, 5721.
(2) (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34,
633. (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S.
Chem. Rev. 2007, 107, 5318. (c) Bellina, F.; Rossi, R.; Lessi, M.
Synthesis 2010, 24, 4131. (d) Le Bras, J.; Muzart, J. Chem. Rev. 2011,
111, 1170. (e) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.;
Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (f) Wu, Y.; Wang,
J.; Mao, F.; Kwong, F. Y. Chem. - Asian J. 2014, 9, 26. (g) Zhou, L.;
Lu, W. Chem. - Eur. J. 2014, 20, 634. (h) Ma, W. B.; Gandeepan, P.;
Li, J.; Ackermann, L. Org. Chem. Front. 2017, 4, 1435.
which undergoes an interchange with alkene to generate
intermediate B. Accordingly, the product D is obtained by
successive 1,2-migratory insertion, β-hydroelimination, reduc-
tive elimination, and liberation of AcOH and Pd (0) species.
The N−O bond of the O-methylketoxime was cleaved by
oxidative addition to the palladium (0) complex, and an
alkenylpalladium species (II) was generated as an intermediate
E.12a−e Oximes directly attacked the olefinic moiety activated
by coordination to Pd(II) complexes,12a,b,d and then the C−N
bond formation/N−O bond cleavage event provided complex
F followed by β-hydride elimination12a,b,d to furnish the
product.
(3) (a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407.
(b) Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008,
10, 1159. (c) Shi, B. F.; Zhang, Y. H.; Lam, J. K.; Wang, D. H.; Yu, J.
Q. J. Am. Chem. Soc. 2010, 132, 460. (d) Engle, K. M.; Wang, D. H.;
Yu, J. Q. Angew. Chem., Int. Ed. 2010, 49, 6169. (e) Engle, K. M.;
Wang, D. H.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 14137.
(f) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011,
76, 3024. (g) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153.
(h) Baxter, R. D.; Sale, D.; Engle, K. M.; Yu, J. Q.; Blackmond, D. G.
J. Am. Chem. Soc. 2012, 134, 4600. (i) Iitsuka, T.; Schaal, P.; Hirano,
K.; Satoh, T.; Bolm, C.; Miura, M. J. Org. Chem. 2013, 78, 7216.
(j) Ma, W.; Mei, R.; Tenti, G.; Ackermann, L. Chem. - Eur. J. 2014,
20, 15248. (k) Chen, L.; Li, H.; Yu, F.; Wang, L. Chem. Commun.
2014, 50, 14866. (l) Zhao, H.; Zhang, T.; Yan, T.; Cai, M. J. Org.
Chem. 2015, 80, 8849. (m) Kumar, N. Y. P.; Bechtoldt, A.;
Raghuvanshi, K.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55,
6929. (n) Pichette Drapeau, M.; Gooßen, L. J. Chem. - Eur. J. 2016,
22, 18654. (o) Simonetti, M.; Larrosa, I. Nat. Chem. 2016, 8, 1086.
(4) (a) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 6908. (b) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius,
F. J. Am. Chem. Soc. 2011, 133, 2350. (c) Wrigglesworth, J. W.; Cox,
B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13,
5326. (d) Ackermann, L.; Fenner, S. Org. Lett. 2011, 13, 6548. (e) Li,
B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14,
736. (f) Zhang, J.; Loh, T. P. Chem. Commun. 2012, 48, 11232.
(g) Wang, Y.; Li, C.; Li, Y.; Yin, F.; Wang, X. S. Adv. Synth. Catal.
2013, 355, 1724. (h) Yang, F.; Ackermann, L. J. Org. Chem. 2014, 79,
12070. (i) Deb, A.; Bag, S.; Kancherla, R.; Maiti, D. J. Am. Chem. Soc.
2014, 136, 13602. (j) Wang, Q.; Han, J.; Wang, C.; Zhang, J.; Huang,
Z.; Shi, D.; Zhao, Y. Chem. Sci. 2014, 5, 4962. (k) Hyster, T. K.;
Dalton, D. M.; Rovis, T. Chem. Sci. 2015, 6, 254. (l) Bechtoldt, A.;
Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L.
Angew. Chem., Int. Ed. 2016, 55, 264. (m) Manikandan, R.;
Madasamy, P.; Jeganmohan, M. ACS Catal. 2016, 6, 230. (n) Yedage,
S. L.; Bhanage, B. M. Green Chem. 2016, 18, 5635. (o) Xia, C. K.;
White, A. J. P.; Hii, K. K. M. J. Org. Chem. 2016, 81, 7931.
(p) Santoro, S.; Ferlin, F.; Luciani, L.; Ackermann, L.; Vaccaro, L.
Green Chem. 2017, 19, 1601. (q) Semakul, N.; Jackson, K. E.; Paton,
R. S.; Rovis, T. Chem. Sci. 2017, 8, 1015.
In summary, we have developed a novel method for tandem
C−C/C−N formation via palladium-catalyzed C−H activa-
tion/styrenation and cyclization of ketoxime with styrenes to
synthesize benzothienopyridines and benzofuropyridines, and
the intermolecular alkenylation of the ketoxime with acrylates
forms 3-alkenyl O-methylketoximes in good to excellent yields.
This method is anticipated to construct structurally diversified
benzothienopyridines and benzofuropyridines for the screening
of potential pharmaceuticals in the future.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectral data (PDF)
Accession Codes
CCDC 1887152 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
(5) (a) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372.
(b) Li, J.; Kornhaaß, C.; Ackermann, L. Chem. Commun. 2012, 48,
11343. (c) Graczyk, K.; Ma, W.; Ackermann, L. Org. Lett. 2012, 14,
4110. (d) Padala, K.; Pimparkar, S.; Madasamy, P.; Jeganmohan, M.
Chem. Commun. 2012, 48, 7140. (e) Feng, R.; Yu, W.; Wang, K.; Liu,
Z.; Zhang, Y. Adv. Synth. Catal. 2014, 356, 1501. (f) Hu, X. H.;
Zhang, J.; Yang, X. F.; Xu, Y. H.; Loh, T. P. J. Am. Chem. Soc. 2015,
137, 3169. (g) Hu, J.; Guan, M.; Han, J.; Huang, Z. B.; Shi, D. Q.;
Zhao, Y. J. Org. Chem. 2015, 80, 7896. (h) Gao, S.; Wu, Z.; Wu, F.;
Lin, A.; Yao, H. Adv. Synth. Catal. 2016, 358, 4129. (i) Rasina, D.;
Kahler-Quesada, A.; Ziarelli, S.; Warratz, S.; Cao, H.; Santoro, S.;
Ackermann, L.; Vaccaro, L. Green Chem. 2016, 18, 5025.
ACKNOWLEDGMENTS
■
We gratefully thank the National Natural Science Foundation
of China (Project Nos. 21676088 and 21476074) for financial
support.
REFERENCES
■
(1) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174. (b) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem.
2009, 121, 5196. (c) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011,
111, 1293. (d) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(e) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761. (f) Liu,
C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (g) Jana,
R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(h) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2012,
45, 788. (i) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45,
936. (j) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52,
́
(6) (a) García-Rubia, A.; Arrayas, R. G.; Carretero, J. C. Angew.
Chem., Int. Ed. 2009, 48, 6511. (b) García-Rubia, A.; Urones, B.;
́
Arrayas, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2011, 50, 10927.
(c) Yu, M.; Liang, Z.; Wang, Y.; Zhang, Y. J. Org. Chem. 2011, 76,
́
4987. (d) Urones, B.; Arrayas, R. G.; Carretero, J. C. Org. Lett. 2013,
D
Org. Lett. XXXX, XXX, XXX−XXX