The reaction between [CoCl(PPh3)3] and CH2Cl2 (Scheme 2,
path B) can thus be written as follows:
wR2 (I 4 2s(I)) = 0.206 (939 param., 20 257 obsd refl., 14 092 unique).
5ꢀ1/2C6H14: C37H32Cl2CoP2ꢀ1/2C6H14, M = 668.45 (without solvent,
see ESIw), C2/c, a = 24.424(1), b = 12.4340(9), c = 22.853(1) A,
b = 90.800(4), V = 6939.5(7) A3, Z = 8, Dc = 1.279 g cmꢂ3
,
2[CoCl(PPh3)3] + CH2Cl2
m(MoKa)
= , F(000) = 2760, Rint = 0.060,
0.769 mmꢂ1
- [CoCl2(CH2PPh3)(PPh3)]
R1 (I 4 2s(I)) = 0.075, wR2 (I 4 2s(I)) = 0.206 (379 param.,
10 466 obsd refl., 6128 unique).
+ [CoCl2(PPh3)2] + 2 PPh3
(2)
1 S. Kliegman and K. McNeill, Dalton Trans., 2008, 4191, and
references cited.
Since neither ZnCl2 nor Zn are present in [eqn (2)], hypo-
thetical Zn carbenoids, often invoked in the activation of
dihalomethanes,14 are not involved here, although a carbene
intermediate has been suggested in the reaction of Cr(II)
complexes with CH2Cl2.15 In the CH2Cl2-based methylation
of ketones with a Mg–TiCl4-based system,16 no intermediate
has been isolated. Our cobalt-based system thus involves steps
closer to those suggested with the noble metals Rh(I), Ru(II)
or Os(II),13,17 which, however, only led to stoichiometric
reactions.18 In our case, Zn restores the active Co(I) species
and allows the quantitative methylation of all the phosphines
present. Formation of P–C bonds assisted by cobalt com-
plexes has been reported from the attack of dibromo- or
di-iodomethane on dinuclear phosphides.19 Whereas oxidative-
addition of organic chlorides to Co(I) complexes has been
reported,12 only one chloro, chloromethyl complex has been
characterized from the photoassisted, oxidative-addition of
CH2Cl2 to Co(I).20 Although the chemistry of [CoCl(PPh3)3] has
been intensively explored,21 it is surprising that, to the best of our
knowledge, its fast reaction with CH2Cl2 has never been discussed.
We have shown here that CH2Cl2 can be readily activated by a
cheap metal, without the need for an external Cl-abstracting
reagent, and exploited for phosphorus methylation. The reaction
involves easily accessible reagents and allows methylation of PPh3
by CH2Cl2, CoCl2 and Zn to be carried out under air, in contrast
to reactions involving Co(0) precursors.8 The phosphonium salts
produced are well-known precursors to e.g. the very important
class of phosphorus ylids. Our reaction appears general for
aromatic and aliphatic phosphines, since variation of their stereo-
electronic properties did not result in appreciable differences in
reactivity. We have thus shown that challenging transformations
considered limited to noble metals can be observed or even
improved using a much cheaper metal such as cobalt.
2 (a) H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1958, 80,
5323; (b) H. E. Simmons and R. D. Smith, J. Am. Chem. Soc.,
1959, 81, 4256; (c) S. E. Denmark and J. P. Edwards, J. Org.
Chem., 1991, 56, 6974; (d) S. E. Denmark, J. P. Edwards and
S. R. Wilson, J. Am. Chem. Soc., 1992, 114, 2592; For recent
examples of asymmetric Simmons–Smith cyclopropanation see:
(e) H. Shitama and T. Katsuki, Angew. Chem., Int. Ed., 2008, 47,
2450; (f) S. G. Davies, K. B. Ling, P. M. Roberts, A. J. Russell and
J. E. Thomson, Chem. Commun., 2007, 4029.
3 For recent examples of cyclopropanation reactions involving
CH2Cl2: (a) X. Xiang, Q. Shen, J. Wang, Z. Zhu, W. Huang and
X. Zhou, Organometallics, 2008, 27, 1959; (b) K.-W. Lin, S. Yan,
I. L. Hsieh and T.-H. Yan, Org. Lett., 2006, 8, 2265; (c) C.-C. Tsai,
I. L. Hsieh, T.-T. Cheng, P.-K. Tsai, K.-W. Lin and T.-H. Yan,
Org. Lett., 2006, 8, 2261.
4 K. H. Park, I. G. Jung, Y. K. Chung and J. W. Han, Adv. Synth.
Catal., 2007, 349, 411.
5 See e.g.: (a) P. Braunstein, Chem. Rev., 2006, 106, 134;
(b) P. Braunstein and F. Naud, Angew. Chem., Int. Ed., 2001, 40, 680.
6 A. Bader and E. Lindner, Coord. Chem. Rev., 1991, 108, ;27.
7 (a) R. Pattacini, G. Margraf, A. Messaoudi, N. Oberbeckmann-Winter
and P. Braunstein, Inorg. Chem., 2008, 47, 9886; (b) A. Kermagoret,
R. Pattacini, P. Chavez Vasquez, G. Rogez, R. Welter and
P. Braunstein, Angew. Chem., Int. Ed., 2007, 46, 6438; (c) S. Jie,
M. Agostinho, A. Kermagoret, C. S. J. Cazin and P. Braunstein,
Dalton Trans., 2007, 4472.
8 H. F. Klein and R. Hammer, Angew. Chem., Int. Ed. Engl., 1976, 15, 42.
9 M. Steiner, H. Grutzmacher, H. Prtizkow and L. Zsolnai, Chem.
¨
Commun., 1998, 285.
10 L. S. Liebeskind, S. L. Baysdon, M. S. South, S. Iyer and
J. P. Leeds, Tetrahedron, 1985, 41, 5839.
11 For recent examples see e.g.: (a) J. A. Wright, A. A. Danopoulos,
W. B. Motherwell, R. J. Carroll, S. Ellwood and
J. Sassmannshausen, Eur. J. Inorg. Chem., 2006, 4857; (b) J. H.
H. Ho, D. S. C. Black, B. A. Messerle, J. K. Clegg and P. Turner,
Organometallics, 2006, 25, 5800; (c) H. A. Burkill, R. Vilar and A.
J. P. White, Inorg. Chim. Acta, 2006, 359, 3709; (d) J. Y. Zeng,
M.-H. Hsieh and H. M. Lee, J. Organomet. Chem., 2005, 690,
5662; (e) E. W. Ainscough, A. M. Brodie, A. K. Burrell,
A. Derwahl and S. K. Taylor, Inorg. Chim. Acta, 2004, 357,
2379; (f) J. J. Brunet, X. Couillens, J. C. Daran, O. Diallo,
C. Lepetit and D. Neibecker, Eur. J. Inorg. Chem., 1998, 349.
The French Embassy in Beijing (doctoral grant to S. J.,
Sino-French Joint Catalysis Laboratory), the CNRS
(post-doctoral position to R.P.) and the Ministere de la
Recherche (Paris) are gratefully acknowledged for support.
We thank Prof. R. Welter for an X-ray diffraction analysis.
12 Y. Chen, H. Sun, U. Florke and X. Li, Organometallics, 2008, 27, 270.
¨
13 T. B. Marder, W. C. Fultz, J. C. Calabrese, R. L. Harlow and
D. Milstein, J. Chem. Soc., Chem. Commun., 1987, 1543.
14 See e.g.: M. Nakamura, A. Hirai and E. Nakamura, J. Am. Chem.
Soc., 2003, 125, 2341.
15 K.-I. Sugawara, S. Hikichi and M. Akita, Chem. Lett., 2001, 1094;
K.-I. Sugawara, S. Hikichi and M. Akita, J. Chem. Soc., Dalton
Trans., 2002, 4514.
16 T.-H. Yan, C.-C. Tsai, C.-T. Chien, C.-C. Cho and P.-C. Huang,
Org. Lett., 2004, 6, 4961.
Notes and references
y X-Ray diffraction data (173 K): 2ox: C17H19Cl3NOPZn, M =
456.02, P21/c, a = 12.8862(3), b = 8.4311(2), c = 18.2833(6) A,
17 J. Gotzig, R. Werner and H. Werner, J. Organomet. Chem., 1985,
290, 99.
b = 98.131(1), V = 2439.7(2) A3, Z = 4, Dc = 1.540 g cmꢂ3
,
0.043,
m(MoKa)
=
1.742 mmꢂ1
,
F(000)
=
928, Rint
=
18 (a) [Mo(CO3)(CO)(PMe3)4] has been found to react slowly with
CH2Cl2 to give an insoluble phosphonium salt, see: E. Carmona,
M. A. Munoz and R. D. Rogers, Inorg. Chem., 1988, 27,
1598; (b) [Fe(CO)4]2ꢂ reacts with PPh3 in CH2Cl2 to give
[Fe(CO)4(CH2PPh3)]: B. Weinberger, G. Tanguy and H. des
Abbayes, J. Organomet. Chem., 1985, 280, C31.
19 H. Werner and R. Zolk, Organometallics, 1985, 4, 601.
20 W. L. Olson, D. A. Nagaki and L. F. Dahl, Organometallics, 1986,
5, 630.
R1 (I 4 2s(I)) = 0.040, wR2 (I 4 2s(I)) = 0.084 (218 param., 3158
obsd refl. 4749 unique); 4: C38H34Cl4P2Zn2, M = 825.13, C2/c,
a = 14.5489(7), b = 13.7296(3), 18.8997(8) A, b = 104.530(2),
V = 3654.5(2) A3, Z = 4, Dc = 1.500 g cmꢂ3, m(MoKa) =
1.720 mmꢂ1, F(000) = 1680, Rint = 0.035, R1 (I 4 2s(I)) = 0.035,
wR2 (I 4 2s(I)) = 0.089 (208 param., 3964 obsd refl., 5318 unique);
ꢀ
4ꢀZnCl2: C76H68Cl12P4Zn6, M = 1922.80, P1, a = 10.261(2), b =
20.439(3), c = 21.995(3) A, a = 63.454(3), b = 86.058(9), g =
83.865(8), V = 4102(1) A3, Z = 2, Dc = 1.557 g cmꢂ3, m(MoKa)
= 1.362 mmꢂ1, F(000) = 5537, Rint = 0.060 R1 (I 4 2s(I)) = 0.075,
21 For a recent example see: J. E. Taylor, M. F. Mahon and
J. S. Fossey, Angew. Chem., Int. Ed., 2007, 46, 2266.
ꢁc
This journal is The Royal Society of Chemistry 2009
892 | Chem. Commun., 2009, 890–892