assembly.8 These properties should allow the construction
of novel functional surfaces.
Scheme 1. Synthesis of SS-DPAs
The phenylazomethine dendrimers (DPAs) with a phenyl-
based core were synthesized up to the fifth generation by a
convergent method via the reaction of aromatic ketones with
aromatic amines.9 The DPA derivatives are synthesized by
the reaction between the DPA dendrons containing an
aromatic ketone and the core compound having some
aromatic amines.7a,d,10 Thus, we dehydrated di-p-diami-
nophenyldisulfide with the DPA dendrons, G1-4, in the
presence of titanium(IV) tetrachloride and 1,4-
diazabicyclo[2.2.2]octane (DABCO) to synthesize the di-
sulfide core dendrimers (SS-DPA G1-4, Scheme 1).
The MALDI-TOF mass spectra of the dendrimers showed
two peaks of the calculated mass and half the mass (Table
1 and Figure S3a). This fact strongly indicates that the
dendrimers have a disulfide unit at the core.11 In contrast,
size exclusion chromatography (SEC) of the dendrimers
showed a single peak (Mw/Mn ) 1.02, Table 1 and Figure
S3b, Supporting Information). Additionally, the absolute
molecular weight, analyzed by a triple detector (a differential
viscometer, laser light scattering, and an RI detector:
Viscotek Corp.),12 agrees with the calculated mass (Table
1). Thus, we determined that the obtained dendrimers have
a single molecular weight and a disulfide unit.
The yield of all the generations of the dendrimers was
almost quantitative;13 this result means that the contact for
dehydration between the aromatic amines of the core and
the aromatic ketone of the dendron would not be three-
dimensionally hindered by the growth of the dendron size
because of the free rotation of the disulfide bond. The yield
of the previous dendrimer derivatives having a rigid core,
such as a phenyl and tris(thienylphenyl)amine core (DPAs
and TPA-DPAs), decreases with the generation number.7a,d,10
The molecular structure of the dendritic molecules closely
relates to the intrinsic viscosity ([η]).14 Figure S4a (Sup-
porting Information) shows Mark-Houwink plots of the SS-
DPAs (Mark-Houwink-Sakurada equation: [η] ) K Ma).
The slopes of these plots (Mark-Houwink exponent; a)
gradually change but do not reach zero. In contrast, we have
confirmed that the Mark-Houwink exponent of the higher
generations of DPAs and TPA-DPAs clearly changes to
nearly zero, which means that these dendrimers have a rigid
spherical structure like a globular protein.7a,d Thus, we can
conclude that only one flexible unit at the core dramatically
changes the structural conformation of the rigid dendrimers.
The changes in the structural properties were also observed
in the hydrodynamic radii (Rh) of these dendrimers, obtained
from the triple detector analysis (Table 1 and Figure S4b.
Supporting Information). The radius linearly increased with
the generation number because of the rigid branched units.
The generational increase in the radius is consistent with the
modeling size of the branched units. Thus, the rigid molecular
chain would radially grow and shield the core (the modeling
structure of SS-DPA G4 is shown in Figure S5, Supporting
Information).15,16 However, the difference in the radii
(7) Metal assembly into the dendrimers also improves the hole-transfer:
(a) Satoh, N.; Cho, J.-S.; Higuchi, M.; Yamamoto, K. J. Am. Chem. Soc.
2003, 125, 8104. (b) Kimoto, K.; Masachika, K.; Cho, J.-S.; Higuchi, M.;
Yamamoto, K. Chem. Mater. 2004, 16, 5706. (c) Kimoto, A.; Cho, J.-S.;
Higuchi, M.; Yamamoto, K. Macromolecules 2004, 37, 5531. (d) Satoh,
N.; Nakashima, T.; Yamamoto, K. J. Am. Chem. Soc. 2005, 127, 13030.
(e) Cho, J.-S.; Takanashi, K.; Highchi, M.; Yamamoto, K. Synth. Met. 2005,
1, 79. (f) Nakashima, T.; Satoh, N; Albrecht, K.; Yamamoto, K. Chem.
Mater. 2008, 20, 2538. (g) Kimoto, A.; Cho, J.-S.; Ito, K.; Aoki, D.; Miyake,
T.; Yamamoto, K. Macromol. Rapid Commun. 2005, 26, 597.
(8) (a) Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.; Chiba, H.
Nature 2002, 415, 509. (b) Nakajima, R.; Tsuruta, T.; Higuchi, M.;
Yamamoto, K. J. Am. Chem. Soc. 2004, 126, 1630. (c) Satoh, N.; Watanabe,
T.; Iketaki, Y.; Omatsu, T.; Fujii, M.; Yamamoto, K. Polym. AdV. Technol.
2004, 15, 159. (d) Takanashi, K.; Fujii, A.; Nakajima, R.; Chiba, H.;
Higuchi, M.; Einaga, Y.; Yamamoto, K. Bull. Chem. Soc. Jpn. 2007, 80,
1563. (e) Yamamoto, K.; Kawana, Y.; Tsuji, M.; Hayashi, M.; Imaoka, T.
J. Am. Chem. Soc. 2007, 129, 9256. (f) Satoh, N.; Nakashima, T.; Kamikura,
K.; Yamamoto, K. Nature Nanotech. 2008, 3, 106.
(9) (a) Higuchi, M.; Shiki, S.; Yamamoto, K. Org. Lett. 2000, 2, 3079.
(b) Takanashi, K.; Chiba, H.; Higuchi, M.; Yamamoto, K. Org. Lett. 2004,
6, 1709. (c) Higuchi, M.; Kanazawa, H.; Tsuruta, M.; Yamamoto, K.
Macromolecules 2001, 34, 8847.
(10) (a) Higuchi, M.; Shiki, S.; Ariga, K.; Yamamoto, K. J. Am. Chem.
Soc. 2001, 123, 4414. (b) Imaoka, T.; Horiguchi, H.; Yamamoto, K. J. Am.
Chem. Soc. 2003, 125, 340. (c) Enoki, O.; Imaoka, T.; Yamamoto, K. Org.
Lett. 2003, 5, 2547. (d) Enoki, O.; Katoh, H.; Yamamoto, K. Org. Lett.
2006, 8, 569
.
(14) (a) Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., III. Angew.
Chem., Int. Ed. Engl. 1990, 29, 138. (b) Tomalia, D. A. Prog. Polym. Sci.
2005, 30, 294.
(11) Gorman, J. J.; Wallis, T. P.; Pitt, J. J. Mass Spectrom. ReV. 2002,
21, 183.
(12) (a) Yau, W. W.; Rementer, S. W. J. Liq. Chromatogr. 1990, 13,
627. (b) Jackson, C.; Yau, W. W. J. Chromatogr. 1993, 645, 209. (c)
Jackson, C.; Yau, W. W. AdV. Chem. Ser. 1995, 247, 69.
(15) Gorman, C. B.; Smith, J. C.; Hager, M. W.; Parkhurst, B. L.;
Sierzputowska-Gracz, H.; Haney, C. A. J. Am. Chem. Soc. 1999, 121, 9958
.
(16) Saeki, A.; Seki, S.; Satoh, N.; Yamamoto, K.; Tagawa, S. J. Phys.
Chem. B 2008, 112, 15540. (b) Yan, X.-Z.; Goodson, T.; Imaoka, T.;
(13) The yield of SS-DPA G1 is the lowest (83%) because of the
solubility to methanol in the reprecipitation process.
Yamamoto, K. J. Phys. Chem. B 2005, 109, 9321
.
1730
Org. Lett., Vol. 11, No. 8, 2009